-
Compteur de contenus
9367 -
Inscription
-
Dernière visite
-
Jours gagnés
90
Type de contenu
Profils
Forums
Téléchargements
Blogs
Boutique
Calendrier
Noctua
Tout ce qui a été posté par Colmic
-
Ce n'est pas tout à fait ce que je dis. Sur les CCD anciens il était indispensable de soustraire le bias aux brutes, aux darks et aux flats. Pour la bonne raison qu'on devait faire une optimisation du dark voire une carte des pixels chauds (avec pour conséquence de modifier la valeur du dark). Sur les CMOS, on ne fait pas d'optimisation du dark. Et on n'en fait surtout pas sur les capteurs qui ont de l'ampglow (183, 294, 1600, etc..). Par conséquent si on n'a pas besoin d'optimiser le dark, on ne modifie pas les valeurs de ce dernier. Et par conséquent la formule (brute - bias) - (dark - bias) se simplifie en brute - dark. En revanche on doit toujours supprimer le bias au flat. Mais avec les capteurs très récents (533, 2600, 6200 entre autres) qui ont un bias très homogène, il est intéressant de créer un bias synthétique, comme ça on n'ajoute plus du tout de bruit. Plus de bias pour les brutes, plus de bias pour les darks, et bias synthétique pour les flats =>>> plus besoin d'enregistrer les bias. Concernant l'offset caméra, comme je l'ai dit plus haut, moi je m'en occupe pas puisqu'on n'a pas la main dessus avec l'ASiair. Quelque soit le gain utilisé, avec la 2600/6200 c'est offset à 50, avec la 533 c'est 70.
-
C'est peu de le dire, surtout que cette image date de 2019 et à l'époque on n'avait pas le SiriL d'aujourd'hui. Je l'aurais bien reprise (surtout que j'ai Noise et StarX maintenant) mais j'ai malheureusement perdu les brutes (j'ai claqué un disque externe avec les brutes d'une bonne centaine d'objets ).. La pose courte j'aimerais bien m'y lancer, c'est je pense l'avenir du CP, avec des caméras de plus en plus sensibles. J'aime beaucoup le setup de @Roch , un bon gros T500 à F/3.3 en altaz et une 2600 mono. En terme de budget on n'est pas loin d'un setup FSQ + EM400. En terme de mise en oeuvre c'est pas pire que de monter l'EM400 et de faire la mise en station. Enfin en terme d'emmerdement, faut voir... J'ai le même soucis. Il m'arrive parfois de demander à ma compagne de me dire comment sont les couleurs. C'est pour cette raison que j'aime bien faire du N&B Maintenant je fais entièrement confiance à l'ajustement des couleurs par photométrie de SiriL !
-
Bien joué, elle est chouette celle-là !
-
Bon tout d'abord bravo Seb pour cette débauche d'images ces derniers temps Je réagis à ceci : Emil c'est le gars qui a développé AS2! et AS3! Il est un peu connu dans le milieu Je trouve pas perso, cette image, réalisée avec un T400, est à mon sens très très loin de son plein potentiel, d'autant plus en poses très courtes. J'ose la comparaison, avec une lulu de 106 seulement (et seulement 530 de focale !) et des poses classiques de 60 secondes, sur une ASI183 (ya une heure de pose au total c'est tout). A gauche à la 106, à droite celle de Emil avec le T400 : J'ai refait la même l'an dernier avec cette fois mon Intes 180 à F/8 et 396 poses de 5s (avec l'ASI533 et un gain fort) : J'espérais largement mieux, or l'image n'arrive pas au niveau de résolution de la 106, avec pourtant presque le double de diamètre et des poses bien plus courtes et je dirais même sous un ciel moins turbulent. Et mon Intes est pourtant un excellent tube quand je vois ce qu'il me sort en planétaire En revanche, celle-ci de @exaxe avec son T300 et une belle expérience en poses courtes, là oui on passe un gros pallier en terme de résolution : J'ai l'impression qu'il y a un pallier au niveau du temps de pose unitaire, au-delà duquel la turbulence vient dicter sa loi quoi que tu fasses. Et ce pallier à mon sens, il est inférieur à la seconde.
-
Tu as tout dit. Je pense que là aussi tu confonds l'offset caméra et les offsets. L'offset caméra (celui dont on parle depuis le début) a déjà été appliqué à TOUTES les images, je le répète, que ce soit des brutes, des flats des darks ou même des bias. Ce n'est pas au moment de la construction du master dark que tu ajoutes l'offset, c'est lors de la prise de vue, donc bien en amont du pré-traitement.
-
C'est pas au moment de la conversion analogique/numérique que tu obtiens des valeurs négatives, c'est après la calibration. Donc tout se passe au moment des calculs numériques, par le soft de pré-traitement, quand tout a déjà été converti en valeurs numériques. Ce qu'il faut comprendre c'est que c'est pas (light + offset) - (dark + offset) = light - dark + offset - offset, ce n'est pas le bon calcul. Le bon calcul c'est light - dark. La valeur d'offset ayant déjà été ajoutée aux 2 images au moment de la prise de vue, et pas au moment du pré-traitement. La valeur du fond de ciel étant nettement supérieure à 0 et étant supérieure à la valeur du dark (modulo la moyenne), on a avec cette méthode obligatoirement une valeur positive. Tu penses bien que si tout le monde s'est mis à appliquer cette méthode (constructeurs comme développeurs) c'est qu'il y avait bien un problème à la base, c'est un truc qu'on ne peut pas remettre en question.
-
T'es mal Bruno T'es mal... Remarque moi je me fais tout petit aussi
-
Je pense avoir bien lu. Et on va dire que je connais très bien ce tuto de Cécile Alors non, le tuto ne t'explique pas comment déterminer l'offset caméra, il t'explique juste comment récupérer cette valeur (qui est toujours présente dans l'entête fit), afin justement de pouvoir calculer la valeur du bias synthétique. L'offset caméra, tu le donnes au moment de la prise de vue (ou alors t'as tout simplement pas la main dessus selon les logiciels de prise de vue, exemple l'ASiair), pas au moment du pré-traitement. Quand tu parles de DOF en France, il faut comprendre DBF (darks, bias, flats). En anglais on ne fait pas cette confusion. Dans ton explication, tu parlais bien de l'utilisation des offsets (comprendre les bias) : alors que la question ne portait que sur l'offset caméra. C'est bien pour cette raison que dans la dernière version de SiriL on a supprimé les scripts en français. Ca fait chier beaucoup de monde, mais c'est pour le bien de tous Un bias est un bias, l'offset est l'offset, plus aucune confusion possible. L'offset est ajouté à TOUTES les images, que ce soit des brutes, des darks, des flats ou des bias. Et non ça ne sert pas à rien si tu le rajoutes aussi aux darks Ca permet justement de récupérer la valeur réelle du fond de ciel (puisque justement l'offset caméra a été ajouté à TOUTES les images). Tiens je vais citer @clouzot qui a fait un très bon papier à ce sujet :
-
Encore heureux Bienvenue à toi Tu passeras par le forum présentation stp histoire qu'on te connaisse un peu mieux, tes motivations etc..
-
Je pense que tu confonds les bias et l'offset caméra. Tout dépend de la caméra. Sur les modèles récents équipés d'un mode HCG (High Conversion Gain), on a la possibilité d'utiliser 3 gains : - le gain 0, c'est celui où tu auras la plus grande dynamique, utile pour la photométrie ou éviter de clipper des étoiles voire le centre d'une galaxie (ou genre le coeur d'Orion) - le gain 100, c'est celui qui déclenche le mode HCG et qui réduit drastiquement le bruit de lecture, bref le gain qu'on va utiliser la majeure partie du temps - le gain 200 voire 300 : intéressant pour ceux qui font de la pose courte/très courte ou qui ne veulent pas des poses de 10 minutes en narrowband Pour les caméras plus anciennes, là aussi on utilise généralement 3 gains dans la même idée (un gain proche de zéro pour avoir les plus grands puits de potentiel possible, le gain unitaire passe-partout, et un gain élevé pour les poses courtes ou pour éviter en narrow-band des poses trop longues). Pour l'offset caméra, par exemple sur l'ASiair on n'a pas la main dessus et c'est l'ASiair qui prend l'offset conseillé par le constructeur (50 pour les 2600/6200 par exemple). Sinon, comme mentionné au-dessus, prendre une valeur qui permet de ne pas clipper le fond de ciel à 0. Tu trouveras dans ma signature un article sur l'utilisation des CMOS, j'en parle un peu du gain etc... Personnellement j'évite d'utiliser trop de gains différents parce que sinon ça m'oblige à faire plein de banques de darks différents Donc moi avec ma 2600 et 6200, c'est soit gain 0 soit 100.
-
Et tu te rendras peut-être compte que tu as payé pour des choses qu'on dispense ici gratuitement
-
temps de pose monochrome vs couleur
Colmic a répondu à un sujet de soleil63 dans Matériel astrophotographique
Plusieurs points : - la caméra mono a un meilleur RSB (rapport signal/bruit) que la caméra couleur en filtres équivalents - 30 minutes par couche couleur suffit pour faire le RVB - tout le reste se fait sur la luminance avec une bien meilleure sensibilité J'ai pu comparer 2 images d'un même objet avec la même optique, entre ma 2600 mono + filtres d'un côté, et ma 6200 couleur de l'autre. Si je prends un temps total disons de 4 heures, le RSB final sera quand même meilleur avec la cam mono. La résolution quant à elle sera bien meilleure avec la cam mono. Mais l'emmerdement est quand même en faveur de la cam couleur, surtout si tu te lances dans des mosaïques. Ce que je fais de mon côté avec ma 2600 mono maintenant, c'est que je commence déjà par faire les RVB (30 minutes par couche) et ensuite je passe au L jusqu'à plus soif ou jusqu'à l'arrivée des nuages. Intéressant comme idée. C'est un truc à tester ça. Malheureusement mon NBZ et mon L-Extrême sont en M48 et ma roue à filtre est en 36mm, sinon j'aurais bien testé. -
soleil A quoi ressemble le Soleil en ce moment
Colmic a répondu à un sujet de Newton dans L'actualité du ciel
C'est ce que je disais juste au-dessus, le navigateur peut bloquer le téléchargement parce qu'on vient d'un site https (Webastro) et qu'on essaie de DL sur un site non https (Astrosurf). Dans ce cas il faut simplement cliquer sur "autoriser le téléchargement" (ou son équivalent Chrome ou autre). -
soleil A quoi ressemble le Soleil en ce moment
Colmic a répondu à un sujet de Newton dans L'actualité du ciel
N'essayez pas d'ouvrir le lien Clic droit + enregistrer la cible du lien sous... -
Comme je te disais, une recherche Google "caméra ZWO frais de douane" et "ZWO garantie" Au hasard... http://www.astrosurf.com/topic/159290-cherche-asi294mc-pro-acheter-zwo-en-direct-montant-frais-à-prévoir/?do=findComment&comment=2256052
-
soleil A quoi ressemble le Soleil en ce moment
Colmic a répondu à un sujet de Newton dans L'actualité du ciel
Ca fonctionne bien chez moi (Firefox) mais ça affiche risque potentiel de sécurité, suffit de valider et ça charge. Peut-être que c'est pareil chez vous -
C'est de la luminance seule ici avec filtre L. C'était juste le jour des tests de la 533 mono (que j'ai remplacée par la 2600 mono depuis). L'idée c'était de voir quelle magnitude je pouvais atteindre avec seulement 10s de pose et ce setup. Un échantillonnage entre 0.5 et 0.7" d'arc ça donne un champ des possibles incroyable en CP, tous les NGC et IC sont accessibles, ça fait déjà un bon paquet d'objets. Avec une cam mono on privilégie effectivement un maximum de luminance, et 30 minutes par couleur ça suffit. On rentre dans la saison des galaxies pour quelques mois maintenant...
-
Polarité alimentation ASIAIR Plus
Colmic a répondu à un sujet de Jluc06 dans Matériel astrophotographique
Bonjour, pour le sujet ASiair il existe un topic unique qui centralise toutes les questions relatives à cet appareil. Sinon pour répondre à ta question, les prises jack 5.5/2.1 ont toujours le + au milieu, la masse est toujours en périphérie. Certaines montures Vixen étaient autrefois inversées, avec le + à l'extérieur, beaucoup se sont fait avoir (dont moi à l'époque) avec pour conséquence un régulateur cramé... -
Bonjour, qu'entends-tu par matériel coûteux ? On est pas mal ici à acheter directement auprès de ZWO, de la petite cam à 300 dollars jusqu'à l'ASi6200 à plus de 4000. Certains aussi ont acheté leur AM5 directement chez ZWO également. Les frais de douane, TVA et frais de dossier sont pris en charge directement par FedeX ou DHL (c'est généralement ces 2 là qui s'occupent de l'acheminement). C'est à eux que tu paies ces frais directement. Pour DHL tu reçois un SMS qui t'invite à payer, si pas de paiement pas de livraison, aussi simple que ça. Pour FedeX, tu reçois un mail ou un courrier postal t'invitant à payer sous un délai de 1 mois après avoir reçu le colis. Les frais de douane dépendent avant tout de la valeur déclarée par ZWO sur le colis (je n'en dis pas plus, tu trouveras pas mal de posts ici qui en parlent). Si le matériel est en stock, entre 4 et 8 jours.
-
Bonjour à tous, comme je vois passer régulièrement les mêmes questions autour des CMOS (caméras et APN), j'ai décidé de créer un nouveau topic unique qui permettrait de répondre à toutes vos interrogations. On centralisera ainsi toutes les règles, les bonnes pratiques, etc.. sur le même topic. Nous aborderons ainsi les sujets suivants : Petit aparté concernant les calculs numériques Empilement et dynamique Comment analyser le graphe d'un capteur Déterminer son temps de pose ou règle des 3 sigma DARKS, FLATS, BIAS (OFFSETS) et DITHERING Calcul de l'échantillonnage idéal avec un CMOS Petit aparté concernant les calculs numériques Notions de calcul binaire Nous travaillons ici en binaire, c'est à dire que l'électricité qui passe dans un fil (ou un bit) ne peut avoir que 2 états : état 0 éteint et état 1 allumé. Si nous travaillons cette fois sur 8 fils en parallèle (8 bits), nous pouvons obtenir 2 puissance 8 = 256 états différents (entre 0 et 255). Enfin si nous travaillons sur 16 fils (16 bits), nous pouvons obtenir 2 puissance 16 = 65536 états différents (entre 0 et 65535). Nous obtenons ainsi différentes puissances de 2, à savoir 2, 4 , 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 et 65536. Toute l'informatique repose sur ces notions et il est intéressant de les connaître pour bien assimiler son fonctionnement. Les octets Ainsi quand on parle d'octet, cela correspond à 8 bits (octo : 8 ). Attention également, en anglais octet se prononce Byte, donc 1 Byte = 8 bits (1B = 8b). Avec 256 états différents, il est ainsi possible de coder tout l'alphabet avec des caractères spéciaux, des symboles etc... L'invention de la table de caractères ASCII a permis de développer un langage informatique (cette table de caractères a depuis été remplacée par la table ANSI ou Unicode sous Windows). Par exemple, la lettre A possède le code ASCII 65 ce qui en binaire correspond à 0100 0001 ou encore 41 en hexadécimal. Ainsi, l'octet est devenu la base de toute l'informatique. Par exemple, le texte brut contenu sur une feuille A4 peut être codé sur seulement 2000 octets environ (2 kilo-octet ou 2ko), soit environ 400ko seulement pour un livre de 200 pages ! Poids d'une image en octets Pour une image en 16 millions de couleurs, un pixel peut être codé sur 3 octets seulement (1 octet pour chaque couche R, V, B), soit 256 puissance 3 =16 777 216. Une image BMP non compressée de 1024 x 768 pèsera alors exactement 1024 x 768 x 3 = 2.359.296 octets, soit 2.25 Mégaoctets* (2.25Mo) : En revanche une image FIT (par définition non compressée et codée sur 16 bits) issue d'une ASI6200MC de 62 millions de pixels pèsera environ 116Mo. En effet, avec 9576 x 6388 x 2 = 122.353.920 octets ou encore 116Mo (un pixel est codé sur 2 octets pour arriver à 16 bits) : * A noter qu'un Mégaoctet vu par l'ordinateur ne représente pas 1.000.000 (soit 10 puissance 6) mais 1.048.576 octets (soit 2 puissance 20). C'est pour cette raison que 2.359.296 / 1.048.576 = 2.25Mo et pas 2.36Mo. Merci à @keymlinux pour le complément d'explication suivant : Débits et vitesse de connexion Si on parle d'une connexion de 100Megabits par seconde, nous obtenons une vitesse de 10 Méga-octets par seconde environ (8 bits + des bits de contrôle). Idem quand on parle de Gigabits, 1 Gigabit/s équivaut à 100Mo/s (100 Méga-octets par seconde). Il faut donc faire très attention aux symboles utilisés. 100MB/s en anglais correspond à 100 Méga-octets par seconde quand 100Mb/s correspond à 100 Mégabits par seconde. Avec une connexion fibre de 1Gb/s, en théorie on pourrait ainsi transférer une image FIT de 120Mo (issue d'une ASI6200) en moins de 2 secondes ! Empilement et dynamique Quand on empile 4 fois plus d'images, on obtient 1 bit de dynamique en plus. Ainsi on gagne 2 bits pour 16 images empilées, 3 bits pour 64, 4 bits pour 256 images, etc.. Il est intéressant de connaître cette notion, car si on perd 2 bits (ou 2 stops) en montant de 400 à 800 ISO par exemple, alors il faudra empiler 16 fois plus d'images à 800 ISO pour avoir la même dynamique qu'à 400 ISO. De même, avec une caméra 12 bits on devra empiler 16 fois plus d'images qu'une caméra 14 bits pour obtenir la même dynamique, et 256 fois plus qu'une caméra 16 bits ! Une grande dynamique d'image permet de faire ressortir les faibles extensions sans cramer le cœur d'une galaxie par exemple, mais aussi d'obtenir des dégradés de gris ou de couleurs plus riches. Comment analyser le graphe d'un capteur ? Nous allons d'abord voir les différentes notions qui vont nous permettre d'analyser correctement et simplement (sans trop de formules compliquées) les différentes valeurs dans les graphes mis à disposition des constructeurs. Pour cela nous allons avoir besoin de connaître le fonctionnement d'une caméra ou d'un APN. FW : Full Well Un capteur CMOS contient un certain nombre de pixels, composés de puits de potentiel qui vont, comme un entonnoir qui recueille de l'eau de pluie, recueillir les photons qui arrivent sur le capteur, les transformer en électrons, et les convertir en unités numériques (ADU) à l'aide d'un convertisseur Analogique/Digital (ADC). Ces entonnoirs ne sont pas infinis, c'est à dire que quand l'entonnoir déborde, le pixel est dit "saturé". La capacité de ces entonnoirs à photons est donnée par le premier graphe, à savoir le FW ou Full Well, ou encore la capacité des puits de potentiel des pixels. Une fois les électrons convertis numériquement, nous obtenons une valeur en ADU. Le convertisseur (ADC) est généralement donné sur un nombre de bits, entre 8 et 16 avec une capacité en ADU entre 256 (8 bits) et 65536 (16 bits). GAIN Le second graphe nous donne généralement le GAIN, à savoir combien d'électrons sont convertis en ADU pour un gain donné. GAIN et gain ne sont donc pas la même chose. le GAIN s'exprime en électrons par ADU (e-/ADU) alors que le gain n'est qu'une amplification du signal reçu (de la même façon qu'on retrouve les ISO sur les APN) et s'exprime en décibels (échelle 0.1dB sur les graphes). Ainsi pour une amplification donnée de xx décibels, le GAIN en électron par ADU évoluera. Une valeur intéressante de ce graphe du GAIN se situe quand 1 électron = 1 ADU, on appelle ceci le gain unitaire et c'est généralement la valeur qu'on va utiliser le plus souvent pour faire nos images, avec un bon compromis entre le bruit et la dynamique. DR : Dynamic Range Le 3ème graphe va nous montrer la courbe de la dynamique du capteur (DR ou dynamic Range) en nombre de stops (ou en bits), comparable à un APN. Cette dynamique est maximale au gain 0 et va décroître régulièrement si on monte le gain. Une dynamique de 16 bits va nous permettre d'avoir 65536 niveaux de gris ou de couleurs sur chaque pixel, quand une dynamique de 8 bits ne nous donnera plus que 256 niveaux de gris ou de couleurs possibles. Read Noise Enfin le dernier graphe nous donnera le bruit de lecture de la caméra, ou le Read Noise, en électrons. Le bruit de lecture dépend du capteur mais aussi du gain utilisé. Plus le gain est élevé, plus le bruit de lecture va baisser dans une certaine mesure pour finir par stagner. Prenons maintenant 2 exemples concrets et analysons-les. EXEMPLE 1 : ASI183MM Comment analyser cette caméra ? Tout d'abord nous voyons dans le premier graphe, que la capacité des puits de potentiels est de 15.000 électrons environ à gain 0. Pour convertir ces 15.000 électrons en ADU au gain 0 on voit sur le second graphe que le GAIN est de 3.6 environ. 3.6 = 15.000 / ADU donc ADU = 15.000 / 3.6 ce qui nous donne environ 4166 ADU pour 15.000 électrons. En numérique, la valeur la plus proche de 4166 est 4096, soit 2 puissance 12 en binaire ou encore 12 bits. Il est donc inutile d'utiliser un ADC supérieur à 12 bits avec cette caméra, puisque les puits de potentiel ne vont que jusqu'à 4096 ADU. Sur le second graphe, on voit que le gain unitaire (pour rappel l'endroit sur le graphe où 1 électron = 1 ADU) se situe au gain 120 (soit 12dB d'amplification).* A ce gain, la dynamique est de 11 bits environ et le bruit de lecture a bien chûté de 3.0e- à environ 2.2e-. C'est à ce gain qu'on fera la plupart de nos images. Travailler à un gain inférieur nous donnera une plus grande capacité des puits de potentiel, donc un risque de saturation moins élevé. Travailler à un gain supérieur nous donnera un bruit de lecture plus faible, mais une dynamique plus faible et une saturation qui arrivera plus rapidement. * Sur d'autres graphes ou mesures réalisées, on note un gain unitaire de 111 et non pas 120. Sur l'ASiair par exemple, ce gain unitaire est bien paramétré à 111. A noter que plus on monte le gain plus on réduit la dynamique du capteur. On voit que la courbe du bruit de lecture s'infléchit vers 200 de gain et le bruit ne descend plus beaucoup ensuite. A 300 de gain (soit 30dB d’amplification !), on n'a plus que 8 bits de dynamique pour 1.5e- de bruit de lecture, et il ne reste plus qu'une capacité de 400 électrons dans les puits de potentiel, la saturation des pixels intervient très rapidement. Monter le gain sur ce type de capteur peut toutefois être intéressant quand on travaille en narrowband (avec filtres SHO) car la perte de lumière due aux filtres est importante et les temps de pose unitaires deviennent très longs. Pour réduire ce temps de pose à des valeurs acceptables, on augmente alors le gain. Cela permet également de limiter l'ampglow de ce capteur (l'électroluminescence sur le côté du capteur) qui devient très difficile à retirer après 5 minutes de pose. EXEMPLE 2 : ASI2600MC Comment analyser cette caméra ? On voit dans le premier graphe que la capacité des puits de potentiel est bien plus élevée sur cette caméra que l'ASI183 du dessus. A gain 0, elle est de 50.000 électrons. Ce qui veut dire qu'elle saturera nettement moins rapidement, permettant une bonne dynamique sur les objets à fort écart de luminosité (M42, M31, etc..). Pour convertir ces 50.000 électrons en ADU au gain 0, le GAIN du second graphe est de 0.8 environ. Ce qui nous donne 50.000 / 0.8 = 62500 ADU environ. Il nous faudra cette fois un ADC de 16 bits (65536 étant la valeur la plus proche en numérique). Sur ce capteur, on voit une chute rapide du bruit de lecture qui survient à gain 100 (10dB d'amplification). Cette chute s'explique car à ce gain de 100 le capteur déclenche son boost d'ampli et passe en mode HCG (High Conversion Gain). Cet ampli va booster le gain du capteur avec pour conséquence un bruit fortement réduit tout en conservant la dynamique d'origine. Ceci est assez révolutionnaire et typique chez Sony depuis le réputé A7S qui déclenche son mode HCG à partir de 2000 ISO. Sur ce type de capteur, on ne peut pas parler de gain unitaire puisque le GAIN démarre seulement à 0.8, mais on prend alors le gain de déclenchement du mode HCG, à savoir 100 sur ce capteur. On continue l'analyse et on voit ensuite que le bruit de lecture ne descend plus au-delà du gain 100. Il est donc inutile de dépasser le gain 100 puisqu'on baisserait alors la dynamique du capteur sans réduire le bruit. Si un APN était équipé de ce capteur, on dit alors qu'il devient ISOLess à partir de l'ISO correspondant au déclenchement du mode HCG. Pour revenir au Sony A7S, il est donc particulièrement intéressant de travailler à 2000ISO mais monter plus haut en ISO ne fera rien gagner, au contraire, on perdra en dynamique. Sur ce capteur IMX571 de l'ASI2600MC, on n'a finalement que 2 gains de travail : 0 dans les cas où limiter la saturation est importante (photométrie par exemple, ou conserver la couleur des étoiles brillantes), et 100 pour tout le reste.
- 218 réponses
-
- 32
-
-
-
Projet collaboratif : réaliser un contrepoids-batterie
un sujet a posté Colmic dans Matériel général
Bonjour à tous, je me décide à créer un nouveau topic pour vous faire part de mon projet. Projet qui a mûri petit à petit au fur et à mesure de l'avancement de ce topic : Mon idée de départ : Un contrepoids c'est con, et à part nous faire chier à les porter, ça ne sert à rien d'autre qu'à équilibrer une monture. En gros c'est du poids mort. Rapport plaisir/emmerdement de ce truc ? Zéro ! Et si on faisait autre chose de ce poids mort justement ? Par exemple une batterie ? Alors oui ça existe déjà, notamment chez ioptron, mais le prix est prohibitif pour seulement 8Ah : https://www.astroshop.de/fr/contrepoids/contre-poids-ioptron-contrepoids-powerweight-avec-accumulateur-integre-8ah/p,44850 Plusieurs mois après, voilà où j'en suis dans ma réflexion... Le cahier des charges pour commencer : doit remplacer un contrepoids existant sinon c'est pas marrant ! Donc minimum 4kg au total doit pouvoir s'insérer dans la plupart des barres de contrepoids, on va dire entre 16 et 32mm doit pouvoir alimenter un setup complet d'imagerie (hors PC portable) pour une nuit entière de 8 heures, soient entre 35 et 40Ah Les différents diamètres des barres de contrepoids des montures courantes (merci à @Gandalf) : Le type de batterie : Disons-le tout de suite, 40Ah en plomb c'est impossible compte-tenu de la taille et du poids. Donc exit le plomb. Aujourd'hui les batteries Li/ion ont le vent en poupe de par leur rapport prix/poids/capacité. Seulement les Li/Ion sont assez dangereuses avec risque d'explosion. On leur préfère maintenant les LiFePo4, un peu plus chères mais nettement plus sécurisées et pratiques à utiliser. De plus leur tension à 3.2V est nettement plus intéressante que les 3.7V des Li/ion, avec une tenue en décharge meilleure. On le voit bien actuellement, les batteries LiFePo4 de 12V ont le vent en poupe malgré leur prix encore très élevé. Pas mal d'avantages par rapport aux batteries classiques au plomb : on peut les décharger totalement, la charge est rapide, pas de maintenance particulière, pas de dégagement gazeux, pas de charge préventive (ne décharge quasiment pas si non utilisées). L'état actuel de la réflexion Mise à jour du 22 avril 2021 : allez on va dépoussiérer ce topic qui avait tendance à stagner depuis un moment. Ma faute, ma très grande faute puisque je n'ai rien branlé de tout l'hiver !!! J'ai acheté une petite soudeuse par points portative (30 euros) qui marche finalement très bien (après quelques essais sur des bouts de nickel pour avoir la bonne puissance de soudure). Voici le contrepoids prototype terminé. Pour isoler la boîte à gâteaux en fer (aussi bien électriquement que thermiquement), j'ai découpé du tapis de sol grand froid au fond et sur les côtés, ainsi que sous le couvercle (qu'on ne voit pas ici sur la photo). Les accus sont ainsi parfaitement calés dans la boîte sans besoin de fixer quoi que ce soit. Le serrage sur la barre se fait avec 2 supports de tringle à dressing vissés sous et au-dessus du couvercle de la boîte, ça fait 19mm de diamètre, donc ma barre de 18 rentre pile-poil dedans. Le contrepoids fait très exactement 4005 grammes, c'est parfait pour remplacer un de mes 2 contrepoids de 5kg. On voit le support fusible avec un fusible de 15A dedans (ça charge à 10A). Consommation du setup complet : 3A - ASiair en route - Monture en autoguidage - ASI6200 refroidissement à -10°C - caméra de guidage en route - résistance chauffante à 100% - extender Wi-Fi VONets en route - SSD Samsung T7 - avec monture en Goto : 4.1A La capacité est de 37Ah pour 4Kg, soit mieux que ma batterie plomb de 35Ah qui fait 11kg, pour un prix total autour de 150 euros chargeur 10A compris. 3A de consommation en mode prise de vue, soit 12 heures d'autonomie possible. Le BMS final est un Daly Smart BMS avec communication Bluetooth, pour avoir directement les données sur le smartphone (34.71 euros le plus petit modèle LiFePo4 4S) : https://fr.aliexpress.com/item/1005001803913333.html?spm=a2g0o.productlist.0.0.4b5e361c5bs9Ty&algo_pvid=7d660088-61af-4bdd-8974-c37c24b1766e&algo_expid=7d660088-61af-4bdd-8974-c37c24b1766e-0&btsid=0b0a187916191213165812926edddf&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_ Du coup pas besoin d'afficheur sur le boîtier, on accède à toutes les données, tension, intensité, équilibrage des accus, etc.. et on a accès à tout le paramétrage du BMS pour coller aux accus utilisés (notamment la tension de coupure à 2.5V au lieu de 2.2). La charge se fait à 10A, soit une charge complète en 4 heures environ seulement. Mise à jour et résumé des discussions au 9 août 2020 : Je me suis décidé à me mettre à un logiciel 3D pour avancer dans le projet. Ca aide énormément pour éviter les écueils, trouver des incohérences dans le montage, vérifier que des prises pourront passer etc.. Je me suis donc mis à Fusion 360 et me suis approprié l'outil en 2 nuits chrono ! (oui la nuit je bosse mieux en ce moment ). Grâce à une idée de boîte octogonale de @morbli j'ai adapté le concept pour l'optimiser et arriver à ça : Ce qui me fait un produit fini qui ressemble à ça, basé sur un boîtier et 2 couvercles en impression 3D : et j'arrive à un concept final qui ressemble à ça, en rouge et noir, ça a de la gueule non ? Avec pour caractéristiques : un contrepoids d'environ 5kg au total selon l'analyse de Fusion 360 dimensions totales 195 x 195 x 100mm (une pièce principale de 80mm et 2 couvercles haut et bas de 10mm) 12.8V 37Ah grâce à 24 accus LiFePo4 (la plus sécure des Lithium) avec indicateur de charge numérique (avec extinction automatique en 10s), interrupteur à led rouge et 2 prises à verrouillage XLR (1 charge et 1 décharge) protection par BMS intégré de 20A charge rapide à 10A soit une recharge de 0 à 100% en 4 heures compatible avec les barres de contrepoids de 16 à 32mm (j'exclue volontairement les barres supérieures, mais dans l'absolu on pourrait aller jusqu'à 40mm) Pour comparaison une batterie 12V 35Ah LiFePo4 du commerce c'est plus de 400 euros sans le chargeur ! Et la liste des composants utilisés : 24 accus LiFePo4 LiitoKala 32700 de 6500mAh 3.2V (37.26 euros les 12, soit 74.52 euros) 1 BMS spécial LiFePo4 4S 20A à charge séparée (10.37 euros) 1 indicateur de charge (3.90 euros) 1 chargeur spécial LiFePo 14.6V 10A avec prise mâle XLR 3P (29.87 euros) 1 embase femelle XLR 3P pour la charge (7 euros Amazon mais bien moins cher chez Ali) 1 embase mâle XLR 3P pour la décharge (4.5 euros Amazon mais bien moins cher chez Ali) 1 interrupteur avec petite led rouge (à voir si elle éclaire trop... 9 euros Amazon pour 12pcs) Total composants : 140 euros (moins cher en achetant tout chez Ali, on doit gagner 10 euros) incluant le chargeur. A ceci il faut rajouter : les molettes filetées Inox des 2 serrages du contrepoids 2 tiges Inox qui presseront sur la barre pour éviter de l'abîmer 4 écrous M6 longueur 20mm qui s'insèreront dans le boîtier pour les 2 vis de serrage 8 vis inox M6 longueur 30mm + 8 inserts M6 pour les trous 4 vis tête fraisée M3 + 4 écrous pour les 2 embases XLR et le coût d'une impression 3 D des 3 pièces (l'avantage c'est que ça passe sur n'importe quelle imprimante puisque ça ne dépasse pas 200mm) On voit les 24 batteries reliées entre elles en 4S6P (6 blocs en parallèle de 4 accus en série), avec le BMS pour gérer tout ce beau monde et sécuriser l'ensemble. 3.2V x 4 nous donne 12.8V. Et 6500mAh x 6 nous donne 39Ah au total (en réalité c'est la capacité du plus mauvais accu du lot qui va conditionner la capacité totale, d'où l'intérêt d'avoir un peu de rab pour les trier au montage). J'ai réellement pris 6500mAh bien que ces accus soient notifiés 7000mAh, comme ça on ne sera pas déçus. Si on dépasse les 40Ah alors ce sera tout bénef Concernant les différents diamètres de barres de contrepoids, on partirait sur un truc comme ça : Avec uniquement la pièce centrale à réimprimer en fonction du diamètre de la barre, entre 16 et 28mm : Pour les barres de 30 et 31.75mm, alors on n'a pas besoin de cette pièce. (merci à @morbli @Malik @Sebriviere pour les concepts 3D proposés et merci à tous les autres pour toutes vos idées et commentaires) La suite du projet... Si du monde est intéressé par ce concept, on pourrait envisager 2 modèles supplémentaires ce qui donnerait la gamme suivante : modèle Tiny : diamètre barre 10 à 15mm, 4S2P soient 8 accus, 12.8V - 13Ah, diamètre contrepoids 125mm, épaisseur 90mm, poids 1.5kg, coût total des composants environ 80 euros avec le chargeur sans compter l'impression 3D modèle standard : diamètre barre 16 à 32mm, 4S6P soient 24 accus, 12.8V - 39Ah, octogonal de 195x195, épaisseur 100mm, poids 5.5kg, coût total composants environ 140 euros avec le chargeur sans compter l'impression 3D modèle Fat Boy : diamètre barre 33 à 48mm, 4 accus 50Ah en 4S soit 12.8V, octogonal 195x195, épaisseur 150mm, poids 8kg, coût total composants 180 euros avec le chargeur sans compter l'impression 3D Pour le modèle Tiny, qui intéressera les possesseurs de StarAdventurer et autres montures de voyage, ça donnerait un truc comme ça : Et le modèle Fat Boy pourrait ressembler à ceci, mais avec d'autres accus 3.2V 50Ah (merci à @Malik pour le concept 3D) : Basé sur ces accus-là : Voilà, si mon projet vous intéresse, on pourrait envisager une commande groupée pour réduire les coûts, et surtout mettre tout le monde à contribution pour l'impression 3D des boîtiers. Toutes les idées d'amélioration du concept sont les bienvenues Et encore merci aux participants ! Annexe : un test des batteries LiitoKala sur YT : Ou là : -
Salut à tous, je profite d'une excellente discussion qui a eu lieu récemment sur WA pour en faire un topic unique afin que les infos ne tombent pas dans les limbes du forum Petit préambule : les différents gaz intéressants en astrophotographie des nébuleuses Wikipédia : En astronomie, les nébuleuses en émission sont des nuages de gaz ionisé dans le milieu interstellaire qui absorbent la lumière d'une étoile chaude proche et la réémettent sous forme de couleurs variées à des énergies plus basses. L'ionisation est en général produite par les photons à grande énergie émis par une étoile jeune et chaude se trouvant à proximité. Souvent, un amas entier de jeunes étoiles effectue le travail. Cette ionisation échauffe le milieu interstellaire environnant. La couleur des nébuleuses dépend de leur composition chimique et de l'intensité de leur ionisation. Beaucoup de nébuleuses en émission sont à dominante rouge, la couleur de la raie de l'hydrogène alpha à 656,3 nanomètres de longueur d'onde, en raison de la forte présence d'hydrogène dans les gaz interstellaires. Si l'ionisation est plus intense, d'autres éléments peuvent être ionisés et les nébuleuses peuvent émettre non seulement dans d'autres nuances de rouge (soufre II à 671,9 et 673,0 nm), mais aussi dans le vert (oxygène III à 495,9 et 500,7 nm) et dans le bleu (hydrogène bêta à 486,1 nm). Ainsi, en examinant le spectre des nébuleuses, les astronomes peuvent déduire leur composition chimique. La plupart des nébuleuses en émission sont formées d'environ 90 % d'hydrogène, le reste étant de l'hélium, de l'oxygène, de l'azote et d'autres éléments. La bande passante des différents gaz ionisés : l'hydrogène H-béta (Hb) : bande passante 486nm (se trouve dans le bleu) l'oxygène (OIII) : bande passante 496nm à 501nm (se trouve dans le bleu-vert) l'azote (NIIa + NIIb) : bande passante 655nm à 658nm (se trouve dans le rouge) l'hydrogène H-alpha (Ha) : bande passante 656nm (se trouve dans le rouge) le soufre (SIIa + SIIb) : bande passante 672 à 673nm (se trouve dans le rouge) On voit que certaines bandes passantes sont très proches : Le Halpha et le NIIa sont quasiment confondus, et le NIIb est espacé de seulement 2nm Le SIIa et SIIb sont confondus, on obtient un ensemble SII de 2nm d'espacement Le SII est relativement proche du Ha, espacé de seulement 16nm Enfin le OIII et le Hbéta sont très proches, espacés de seulement 10nm Qu'est-ce que le SHO, le HOO ? C'est une technique d'imagerie qui consiste à prendre des images à l'aide d'une caméra monochrome équipée successivement de filtres qui laissent passer le SII, le Ha et le OIII (soit S, H, O). On va pour cela utiliser une roue à filtres équipée de ces 3 filtres, puis une fois les 3 séries d'images prises, on va reconstituer une image couleur selon les spécifications suivantes : Palette Hubble : le SII pour la couche rouge (pour rappel le SII est bien dans le rouge) le Ha pour la couche verte (pour rappel le Ha est aussi dans le rouge !) le OIII pour la couche bleue (pour rappel le OIII est dans le bleu-vert !) Pourquoi ? Tout simplement parce que le vert est la couleur que l'oeil voit le mieux (les détails notamment). Par conséquent les gars de la Nasa, pour les images de Hubble avec filtres S, H et O, ont imaginé placer le Ha dans le vert puisque c'est le gaz qui se trouve le plus abondamment dans les nébuleuses en émission. Ensuite, ils ont décidé de coller le SII dans le rouge naturellement, et le OIII dans le bleu. Un exemple d'image SHO (un peu pourrie puisque réalisée le soir du solstice d'été à 3kms de Paris avec la Lune !!) avec ASI183 mono et filtres Astronomik SHO 6nm : Palette HOO : le Ha pour la couche rouge (logique puisque rouge) le OIII pour la couche verte (logique aussi puisque bleu-vert) le OIII pour la couche bleue (logique encore puisque bleu-vert) On obtient alors une colorimétrie plus proche de la réalité, contrairement au SHO qui est entièrement en fausses couleurs. De plus on économise un filtre puisqu'on n'utilise pas le SII. C'est une technique intéressante car avec seulement 2 filtres ont obtient une image couleur sympa, alors qu'en LRVB il faut 4 filtres et autant de séries d'images. Un exemple d'image HOO (toujours réalisée à 3kms de Paris proche du solstice) avec ASI183 mono et filtres Astronomik H et O 6nm : Qu'est-ce qu'un filtre multi-bandes ? C'est un bout de verre (!) traité spécifiquement afin de laisser passer certaines bandes passantes utiles en astrophotographie, pour faire ressortir les nébuleuses. A la différence des filtres anti-pollution lumineuses qui sont spécialisés pour bloquer les longueurs d'onde des lampes au sodium et autres saloperies (!), les filtres multi-bandes sont là pour laisser passer spécifiquement certaines longueurs d'onde. Les filtres anti-pollution sont les CLS, UHC, LPR, LPS etc.. Et à la différence des filtres SII, Ha et OIII qui sont dédiés aux caméras monochromes, les multi-bandes prennent tout leur sens avec les caméras couleur, puisqu'on va imager toutes les bandes passantes en one-shot ! Il en existe 3 sortes : les filtres bi-bandes : ils filtrent typiquement le Ha et le OIII (ou le SII et le OIII) les filtres tri-bandes : se sont en fait des filtres bi-bandes mais plus espacés et de fait ils englobent plusieurs bandes (typiquement Ha et OIII + Hb qui sont très proches) les filtres quadri-bandes : là aussi on peut dire que ce sont des bi-bandes à bande passante très large (typiquement Ha + SII et OIII + Hb), ou alors de vrais quadri-bandes mais nous allons voir plus loin qu'ils n'ont pas d'utilité réelle Comment les utiliser avec une caméra ou un APN couleur ? Comme on ne va généralement utiliser qu'un seul filtre pour notre séance d'imagerie en One-shot, il suffit de les monter dans un tiroir à filtres (ou Filter Drawer en anglais). Les filtres sont insérés dans le tiroir et peuvent être interchangés sans démonter le train d'imagerie. Par exemple devant une ASI2600MC ça donne ceci avec le tiroir à filtres ZWO M48/M42 : Vous pouvez utiliser le même montage pour un APN, ou insérer directement la version clip du filtre contre le capteur de l'APN : Comment se comportent-ils avec une caméra ou APN couleur ? Pour comprendre comment se comportent ces filtres avec une caméra couleur, il faut déjà comprendre comment elles fonctionnent... Une caméra couleur c'est la même chose qu'une caméra mono sauf que sur chacun des pixels on a placé successivement des filtres rouges, verts et bleus afin de constituer une matrice dite de Bayer, qui une fois interpolée, reconstituera l'image couleur. Et on les a placés dans cet ordre là (il y a 2 fois plus de pixels avec filtres verts que de pixels avec filtres bleus et rouges, car le vert est ce que l'oeil voit le mieux) : RVBVRVBV VBVRVBVR BVRVBVRV VRVBVRVB Etc... Maintenant si on place par exemple un filtre Ha par-dessus tout ça, il reste quoi ? Le Ha étant dans le rouge, il reste : R___R___ ___R___R __R___R_ _R___R__ Etc.. Alors qu'une caméra mono avec le même filtre Ha aura reçu : RRRRRRRR RRRRRRRR RRRRRRRR RRRRRRRR En terme de signal, le canal rouge a reçu tout le flux nécessaire, pas moins qu'une cam mono (en réalité un peu moins à cause des filtres rouges sur les pixels qui réduisent un peu le flux) En terme de résolution en revanche, il ne reste plus qu'un pixel sur 4 puisqu'on a perdu les VV et le B. En chiffres : c'est un peu comme si on réalisait un bin2 sur la caméra, il nous reste donc : 50% de résolution en Halpha (soit racine de 1/4) soit une perte de 50% 50% de résolution en SII (soit racine de 1/4) soit une perte de 50% 86% de résolution en OIII (soit racine de 3/4) soit une perte de 14% par rapport à une caméra mono. Si on travaille en RVB pur, sur une cam couleur il nous reste : 50% de résolution dans le rouge (soit racine de 1/4) soit une perte de 50% 50% de résolution dans le bleu (soit racine de 1/4) soit une perte de 50% 70% de résolution dans le vert (soit racine de 2/4) soit une perte de 30% par rapport à une caméra mono. Mais il ne faut pas oublier que les algorithmes de dématriçage ont bien évolué et qu'on fait maintenant du traitement en drizzle 2x, ce qui diminue un peu la perte. Et le rapport plaisir/emmerdement est bien plus favorable sur la caméra couleur Ça c'était par rapport à des filtres mono-bande Ha, SII ou OIII. Voyons maintenant comment va se comporter notre caméra couleur (ou l'APN) avec un filtre multi-bandes : Si on reprend notre exemple ci-dessus : RVBVRVBV VBVRVBVR BVRVBVRV VRVBVRVB et qu'on applique un filtre duo-band Ha-OIII, il reste : RVBVRVBV VBVRVBVR BVRVBVRV VRVBVRVB Les pixels rouges ont reçu du halpha et les pixels verts et bleus ont reçu du OIII. Intéressant non ? Un exemple d'image HOO (réalisée à 50kms de Paris) avec ASI2600MC et filtre Optolong L-Enhance, le tout en One-shot : Comment traiter les images couleurs avec filtre multi-bandes ? Vous pouvez soit traiter votre image comme une simple image RVB. Ou alors utiliser un script spécifique qui va extraire le signal Ha de la couche rouge, et le signal OIII des couches vertes et bleues, vous récupérez alors 2 images Ha et OIII puis reconstituez l'image couleur en composition HOO. Le tout nouveau SiriL 0.99 béta possède une telle commande et le script associé, ainsi que Pixinsight ou Astro Pixel Processor (APP). L'image ci-dessous, réalisée (à 3kms de Paris) avec une ASI2600MC et le L-Extrême, a reçu un pré-traitment avec extraction Ha+OIII grâce au script SiriL : Et cette fois-ci la même image, mais avec un pré-traitement classique RVB, toujours dans SiriL : Et au fait, avec un filtre multi-bandes on peut aussi faire du mono-bande ! D'ailleurs avec une caméra couleur on peut aussi faire du noir et blanc ! Avec le filtre L-Extrême sur l'ASI2600MC, récupération de la couche Ha uniquement sous SiriL (et toujours à 3kms de Paris !) : Les différents filtres Multi-bandes sur le marché Tout d'abord un peu d'excellente lecture avec ce rapport d'un membre de Cloudynights qui a testé une dizaine de filtres différents : http://karmalimbo.com/aro/reports/Test Report - Multi Narrowband Filters_Feb2020.pdf Un tout nouveau filtre est arrivé sur le marché et il est disponible depuis le 1er juillet 2020. C'est le filtre Optolong L-Extrême. Ici à côté du filtre anti-pollution L-Pro : Il est dispo chez Optique Unterlinden (importateur) au tarif de 290 euros https://www.telescopes-et-accessoires.fr/filtre-l-extreme-optolong-coulant-508mm-c2x31837848 EDIT : j'apprends à l'instant que l'IDAS NBX vient également de sortir début juillet 2020 au tarif de 299 dollars, je l'ai ajouté à la liste ci-dessous. EDIT 2 (06/02/2021) : suite à des soucis de halos sur les étoiles brillantes, le IDAS NBX est retiré du marché et une campagne de rappel a lieu actuellement auprès des acheteurs. Il est remplacé par le tout nouveau NBZ. Les filtres disponibles avec leurs bandes passantes du plus espacé au plus serré : Tous ces filtres existent en 31.7mm, 48mm et certains existent également en version clip pour certains APN. Les prix indicatifs sont pour le modèle M48. Optolong L-Pro (190€) : Ha, SII, NII, OIII, Hb (bande passante inconnue) équivalent à un CLS ou UHC mais avec les bandes plus serrées, on pourrait presque le considérer comme un multi-bande aussi je le place ici Altair quadri-band (249€) : (Ha + SII) 35nm et (OIII + Hb) 35nm Idas NB1 (269€) : (Ha + SII) 20nm et (OIII + Hb) 35nm ZWO bi-band (206€) : Ha 15nm et (OIII + Hb) 35nm (on devrait l'appeler tri-band d'ailleurs puisque le OIII recouvre le Hb également) Altair tri-band (259€) : Ha 12nm et (OIII + Hb) 35 nm Optolong L-Enhance (199 euros) : Ha 10nm et (OIII + Hb) 30nm Idas NB2 (259€) : Ha 15nm et OIII 15nm Idas NB3 (259€) : SII 15nm et OIII 15nm STC Duo-Narrowband (369€) : Ha 10nm et OIII 10nm Idas NBZ (299€) : Ha 10nm et OIII 10nm Optolong L-Extreme (290 euros) : Ha 7nm et OIII 7nm Antlia ALP-T (450 euros) : Ha 5nm et OIII 5nm Triad Quad-band (1350€) : Ha 4nm SII 4nm OIII 4nm Hb 5nm * * Le Triad est le tout premier filtre multi-bandes qui soit sorti sur le marché, mais il est d'une part très cher et ses bandes serrées n'ont pas d'avantage particulier sur les autres dans la mesure ou la caméra couleur ne fera pas la distinction entre le Ha et le SII puisque les 2 sont dans le rouge, les 2 bandes seront donc confondues, et idem pour le OIII et le Hb. On peut donc considérer que c'est plutôt un excellent (Ha + SII) 8nm et (OIII + Hb) 9nm Conclusion Il en résulte que l'Optolong L-Extrême possède un excellent rapport bande passante/prix (le Triad est à plus de 1350 euros !!) et le Idas NBX est promis également à un bel avenir si sa qualité optique est identique au reste de la gamme Idas. Reste à voir la qualité intrinsèque des verres utilisés dans chacun de ces filtres, Altair, ZWO, Optolong et STC sont chinois, alors que Triad est américain et Idas est Made in Japan (Les Idas sont connus pour avoir une excellente qualité optique). Il faudra voir à l'usage si c'est plus intéressant d'avoir un pur bi-band Ha + OIII plutôt qu'un quadri-band (Ha + SII) et (OIII + Hb). Pour du HOO pur, c'est évident, mais pour certaines nébuleuses ça reste à voir. Enfin si vous souhaitez réaliser du vrai SHO avec une caméra couleur, sachez que c'est possible. Techniquement c'est impossible avec un seul filtre car le Ha et le SII sont tous les 2 dans le rouge et les pixels rouges de la caméra couleur ne sauront pas faire la distinction entre les 2 bandes. Mais en utilisant 2 filtres (chacun sur une session d'imagerie) : IDAS NB2 qui laisse passer le Ha et le OIII IDAS NB3 qui laisse passer le SII et le OIII on reconstruit alors le SHO au traitement en récupérant la couche Ha du NB2, la couche SII du NB3 et la couche OIII du NB2 et du NB3 Notre ami @Steph_2.0 utilise cette technique depuis quelques temps avec beaucoup de succès. Exemple d'image SHO réalisée par lui-même avec une ASI2600MC (quand même 40 heures de pose !!)
- 374 réponses
-
- 56
-
-
-
(Topic unique) Tout sur ASiair / ASiair Pro / ASiair Plus
un sujet a posté Colmic dans Astrophotographie
Bonjour à tous, Ce topic est dédié essentiellement à l'ASiair et son remplaçant l'ASiair pro. Merci d'éviter les discussions polémiques ou déontologiques, les comparatifs avec les autres solutions Stellarmate, Nafabox, Astropibox, etc.. Ici le but c'est de discuter de tout ce qui tourne autour de l'ASiair, les paramètres, les accessoires divers, le fonctionnement et la prise en main. Vous trouverez ici le résumé des informations principales distillées sur les nombreuses pages de ce topic, très complet, proposé par @Sebriviere : ASIAIR PRO Webastro V3a.pdf Ainsi que le manuel complet de l'ASiair/Asiair Pro, traduit entièrement en français toujours par @Sebriviere, un gros boulot, merci à lui : https://drive.google.com/file/d/1inZAL9RVx0A2EGi2qgpdQw5Cl6iBCvpm/view?usp=sharing EDIT du 10/09/2021 : voici également la doc traduite en FR (encore une fois merci à Seb) pour l'ASiair PLUS : https://drive.google.com/file/d/1n97b7Y-Drs97tgThp7C86-pu3-RAUhsO/view?usp=sharing -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Post original sur la prise en main de l'ASiair : bon ben voilà, j'attendais depuis des jours l'arrivée de ma caméra de guidage pour pouvoir tester l'ASiAir, c'est fait !! Voici donc mes toutes premières impressions après une soirée d'essais... Tout d'abord qu'est-ce que l'ASiAir ? C'est un petit boîtier Raspberry/Tinkerboard qui embarque un OS Linux + des softs astro basés sur le projet indilib.org. Ce boîtier est muni d'une carte micro-SD contenant les logiciels et pouvant enregistrer les images, de 4 ports USB2.0 (pour y raccorder caméras imageur et guidage, roue à filtres, moteur de mise au point, monture), et d'une connexion Wi-Fi pour être piloté depuis une tablette, un smartphone ou un PC. Vous trouverez quelques autres références disponibles telles : Nafabox, stellarmate, etc.. Lectures intéressantes sur le sujet : https://www.webastro.net/forums/topic/154988-contrôle-setup-astrophotographie-nomade/ https://www.webastro.net/forums/topic/171122-nafabox-version-32/ Certaines de ces solutions sont gratuites (en dehors de l'achat de la Tinkerboard), d'autres sont payantes (Stellarmate, ASiAir). L'aSiAir est à 199 euros habituellement (190 chez P.A). Mais alors, quels sont les avantages de l'ASiAir ? Toutes les solutions proposées plus haut sont basées sur le socle INDI, contenant les outils astro Kstars, Ekos, etc.., avec une interface Linux. La grosse amélioration de ZWO a été de développer entièrement une interface iOS ou Android qui prend en charge l'ensemble de ces softs, avec une facilité d'utilisation déconcertante. Le point négatif, c'est que ASiAir n'accepte que les produits ZWO : caméras, roues à filtres et bientôt son nouveau moteur de mise au point. Je vous invite à découvrir ces 3 vidéos qui expliquent très bien le fonctionnement de l'ensemble : Qu'est-ce qu'il est capable de faire ? ASiAir est capable de gérer entièrement une soirée de prise de vue en pilotant : - caméra imageur ZWO - APN Canon et Nikon - caméra de guidage ZWO - roue à filtres ZWO - moteur de mise au point ZWO (quand celui-ci sortira en juin) - monture (toutes les montures reconnues par Indi le sont également ici, soit la quasi-totalité des montures du marché) Il peut enchaîner plusieurs séries d'images, par exemple 50xL puis 20xR, 20xV et 20xB, puis ordonner à la monture de se parker et éteindre l'ASIAir. Il peut gérer le dithering automatique entre les poses. Et le tout à distance, par Wi-Fi, depuis une tablette ou un smartphone !! ASiAir est fourni avec une micro-SD de 32Go, les câbles qui vont bien, un bloc convertisseur 12V/5V, des velcros pour le coller sur l'instrument. Première soirée de tests J'ai fini de récupérer hier l'ensemble des pièces ZWO manquantes. Hier soir le ciel était clair, j'ai donc décidé de tester tout ce beau monde depuis mon jardin qui se trouve à 3km du périph nord de Paris, autant dire sous un ciel des plus pourris Le matériel est le suivant : - monture Takahashi EM200 Temma2 - Lunette Takahashi FSQ106 au foyer - caméra imageur ASI183MM pro - caméra de guidage ASI290 mini - roue à filtres ZWO EFW-mini (5 filtres) - diviseur optique ZWO AOG - boîtier ASiAir Voici l'ensemble complet, monté à l'arrache vite fait dans le jardin. Par la suite, je ferai des jolis tresses de câbles J'ai donc commencé par brancher l''ASiAir directement à : - la monture via le câble USB-RS232 fourni - la caméra imageur ASi183 - la caméra de guidage ASi290 mini - la roue à filtres J'allume la tablette (Une Galaxy Tab A), j'ai installé au préalable l'application ASiAir directement depuis le Play Store, et je la lance. L'application va paramétrer automatiquement le Wi-Fi pour trouver le nom réseau de l'ASiAir, puis elle reconnaît automatiquement les caméras et la roue ZWO. Je découvre l'interface, je n'ai pas lu la notice volontairement pour me faire une idée de l'ergonomie et je dois dire que cette interface est vraiment USER-friendly Tout est bien foutu, tombe sous le sens, et pourtant c'est en anglais, mais les icônes sont faciles à comprendre. C'est simple comme une tablette en somme ! Et le tout piloté par le doigt Je commence par me familiariser avec la caméra imageur. On a 3 options pour elle : focus pour l'aide à la mise au point, Preview pour le cadrage et juger l'image, et enfin Autorun pour lancer les séries de poses. La fonction Focus est basée sur la FWHM de l'étoile, c'est ce qu'on trouve un peu partout sur la plupart des logiciels de prise de vue. Ensuite je vais paramétrer le dialogue avec la monture. A ce moment, je ne maîtrise pas encore les subtilités de l'application. Par exemple, j'aurais pu activer le GPS de la tablette, il aurait alors pris automatiquement les valeurs latitude, longitude, date et heure. Je ne l'ai vu qu'après en lisant la notice. La Taka est parfaitement reconnue, je peux la piloter depuis les 4 boutons présents à l'écran. Plus du tout besoin de la raquette ! L'autoguidage est piloté non pas depuis le port ST4 mais directement depuis le port RS232. Je passe ensuite sur Skysafari pour aligner la monture, et tout le reste pourra se faire directement depuis l'App de l'ASiAir (Choose Object et Goto). Je fais quelques tests de plate-solving, ça fonctionne parfaitement et réaligne automatiquement la monture sur Skysafari. Je lance ensuite l'autoguidage, qui est basé sur l'interface de PHD2, je ne suis donc pas dépaysé. Je pointe une étoile, j'appuie sur le bouton guidage et il fait automatiquement la calibration puis démarre l'autoguidage. A noter que l'ASiAir gère parfaitement le dithering entre les poses. On peut paramétrer le décalage en pixels et le temps de stabilisation avant de reprendre les poses. Voici une image de l'écran. On y voit l'image de M51 (pris juste au-dessus de Paris, ne m'en veuillez pas !!), le graphe d'autoguidage, et des infos comme la température du capteur, l'histogramme de l'image, etc.. Résultat de 10 poses de 60s au gain maxi, avec filtre L : bon c'est pas terrible hein ? Bah je suis déjà content de sortir ça à 3 km de Paris Je passe ensuite aux choses sérieuses. Je définis les filtres de la roue à filtres et je peaufine les paramétrages divers. Un essai sur M57, avec 2 poses de 180s en halpha avec retrait des darks de 120s (d'où la sous-correction sur l'ampglow à droite) : Je termine enfin la soirée par une série de 20 poses de 120s en Halpha sur NGC6888, suivis automatiquement par 10 darks. Et le tout en visualisant l'ensemble sur la tablette depuis mon lit bien au chaud !! Ce soir j'ai récupéré les images directement sur mon PC depuis le Wi-Fi en me connectant à l'ASiAir (mais il est possible aussi de transférer le contenu de la micro-SD) et réalisé un traitement rapide sous SiriL. 20 images de 120s en halpha, 20 darks. Aucun flat ni offset. Bon c'est pas l'image du siècle bien sûr, c'est pris juste au-dessus de l'horizon de Paris, mais le filtre halpha fait quand même des miracles ! Conclusion : Alors là je dois dire que cet ASiAir va au-delà de mes espérances. Le couple ASiAIR + Skysafari est fantastique ! Et le tout sans fil, bien au chaud Dans quelques semaines sortira le moteur de MAP ZWO qui est déjà pris en charge par l'ASiAir, on aura alors un ensemble entièrement autonome piloté à distance depuis la tablette. Tout est très simple à paramétrer pour un néophyte, En une soirée seulement, sans prendre connaissance de la notice, j'ai pu sortir une image avec autoguidage, dithering et pilotage de la monture + plate-solving. Je vais maintenant me pencher à fond sur les différents manuels disponibles sur le site de ZWO pour voir un peu plus les quelques petites subtilités (comment reprendre une pose le lendemain grâce au plate-solving par exemple) A noter que l'ASiAir pilote maintenant depuis la dernière version les APN Canon et Nikon, ça serait bien si ZWO prenait en compte le pilote ASCOM du A7S pour l'intégrer également, je pourrais alors revendre le Lacerta M-GEN En tout cas mon boîtier SkyBT ne me sera plus d'aucune utilité puisque l'ASiAir se comporte comme un SkyFi (qui est sensiblement au même prix d'ailleurs !) pour piloter la monture depuis SkySafari... ASIairPRO_fr.pdf
