Aller au contenu

Classement

  1. Colmic

    Colmic

    Animateur


    • Points

      5

    • Compteur de contenus

      9374


  2. Moot

    Moot

    Membre


    • Points

      5

    • Compteur de contenus

      5267


  3. fred-burgeot

    fred-burgeot

    Membre


    • Points

      4

    • Compteur de contenus

      2962


  4. m27trognondepomme

    • Points

      4

    • Compteur de contenus

      1307


Contenu populaire

Affichage du contenu avec la meilleure réputation le 08/14/22 dans toutes les zones

  1. Bonjour à tous, Ce topic est dédié essentiellement à l'ASiair et son remplaçant l'ASiair pro. Merci d'éviter les discussions polémiques ou déontologiques, les comparatifs avec les autres solutions Stellarmate, Nafabox, Astropibox, etc.. Ici le but c'est de discuter de tout ce qui tourne autour de l'ASiair, les paramètres, les accessoires divers, le fonctionnement et la prise en main. Vous trouverez ici le résumé des informations principales distillées sur les nombreuses pages de ce topic, très complet, proposé par @Sebriviere : ASIAIR PRO Webastro V3a.pdf Ainsi que le manuel complet de l'ASiair/Asiair Pro, traduit entièrement en français toujours par @Sebriviere, un gros boulot, merci à lui : https://drive.google.com/file/d/1inZAL9RVx0A2EGi2qgpdQw5Cl6iBCvpm/view?usp=sharing EDIT du 10/09/2021 : voici également la doc traduite en FR (encore une fois merci à Seb) pour l'ASiair PLUS : https://drive.google.com/file/d/1n97b7Y-Drs97tgThp7C86-pu3-RAUhsO/view?usp=sharing -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Post original sur la prise en main de l'ASiair : bon ben voilà, j'attendais depuis des jours l'arrivée de ma caméra de guidage pour pouvoir tester l'ASiAir, c'est fait !! Voici donc mes toutes premières impressions après une soirée d'essais... Tout d'abord qu'est-ce que l'ASiAir ? C'est un petit boîtier Raspberry/Tinkerboard qui embarque un OS Linux + des softs astro basés sur le projet indilib.org. Ce boîtier est muni d'une carte micro-SD contenant les logiciels et pouvant enregistrer les images, de 4 ports USB2.0 (pour y raccorder caméras imageur et guidage, roue à filtres, moteur de mise au point, monture), et d'une connexion Wi-Fi pour être piloté depuis une tablette, un smartphone ou un PC. Vous trouverez quelques autres références disponibles telles : Nafabox, stellarmate, etc.. Lectures intéressantes sur le sujet : https://www.webastro.net/forums/topic/154988-contrôle-setup-astrophotographie-nomade/ https://www.webastro.net/forums/topic/171122-nafabox-version-32/ Certaines de ces solutions sont gratuites (en dehors de l'achat de la Tinkerboard), d'autres sont payantes (Stellarmate, ASiAir). L'aSiAir est à 199 euros habituellement (190 chez P.A). Mais alors, quels sont les avantages de l'ASiAir ? Toutes les solutions proposées plus haut sont basées sur le socle INDI, contenant les outils astro Kstars, Ekos, etc.., avec une interface Linux. La grosse amélioration de ZWO a été de développer entièrement une interface iOS ou Android qui prend en charge l'ensemble de ces softs, avec une facilité d'utilisation déconcertante. Le point négatif, c'est que ASiAir n'accepte que les produits ZWO : caméras, roues à filtres et bientôt son nouveau moteur de mise au point. Je vous invite à découvrir ces 3 vidéos qui expliquent très bien le fonctionnement de l'ensemble : Qu'est-ce qu'il est capable de faire ? ASiAir est capable de gérer entièrement une soirée de prise de vue en pilotant : - caméra imageur ZWO - APN Canon et Nikon - caméra de guidage ZWO - roue à filtres ZWO - moteur de mise au point ZWO (quand celui-ci sortira en juin) - monture (toutes les montures reconnues par Indi le sont également ici, soit la quasi-totalité des montures du marché) Il peut enchaîner plusieurs séries d'images, par exemple 50xL puis 20xR, 20xV et 20xB, puis ordonner à la monture de se parker et éteindre l'ASIAir. Il peut gérer le dithering automatique entre les poses. Et le tout à distance, par Wi-Fi, depuis une tablette ou un smartphone !! ASiAir est fourni avec une micro-SD de 32Go, les câbles qui vont bien, un bloc convertisseur 12V/5V, des velcros pour le coller sur l'instrument. Première soirée de tests J'ai fini de récupérer hier l'ensemble des pièces ZWO manquantes. Hier soir le ciel était clair, j'ai donc décidé de tester tout ce beau monde depuis mon jardin qui se trouve à 3km du périph nord de Paris, autant dire sous un ciel des plus pourris Le matériel est le suivant : - monture Takahashi EM200 Temma2 - Lunette Takahashi FSQ106 au foyer - caméra imageur ASI183MM pro - caméra de guidage ASI290 mini - roue à filtres ZWO EFW-mini (5 filtres) - diviseur optique ZWO AOG - boîtier ASiAir Voici l'ensemble complet, monté à l'arrache vite fait dans le jardin. Par la suite, je ferai des jolis tresses de câbles J'ai donc commencé par brancher l''ASiAir directement à : - la monture via le câble USB-RS232 fourni - la caméra imageur ASi183 - la caméra de guidage ASi290 mini - la roue à filtres J'allume la tablette (Une Galaxy Tab A), j'ai installé au préalable l'application ASiAir directement depuis le Play Store, et je la lance. L'application va paramétrer automatiquement le Wi-Fi pour trouver le nom réseau de l'ASiAir, puis elle reconnaît automatiquement les caméras et la roue ZWO. Je découvre l'interface, je n'ai pas lu la notice volontairement pour me faire une idée de l'ergonomie et je dois dire que cette interface est vraiment USER-friendly Tout est bien foutu, tombe sous le sens, et pourtant c'est en anglais, mais les icônes sont faciles à comprendre. C'est simple comme une tablette en somme ! Et le tout piloté par le doigt Je commence par me familiariser avec la caméra imageur. On a 3 options pour elle : focus pour l'aide à la mise au point, Preview pour le cadrage et juger l'image, et enfin Autorun pour lancer les séries de poses. La fonction Focus est basée sur la FWHM de l'étoile, c'est ce qu'on trouve un peu partout sur la plupart des logiciels de prise de vue. Ensuite je vais paramétrer le dialogue avec la monture. A ce moment, je ne maîtrise pas encore les subtilités de l'application. Par exemple, j'aurais pu activer le GPS de la tablette, il aurait alors pris automatiquement les valeurs latitude, longitude, date et heure. Je ne l'ai vu qu'après en lisant la notice. La Taka est parfaitement reconnue, je peux la piloter depuis les 4 boutons présents à l'écran. Plus du tout besoin de la raquette ! L'autoguidage est piloté non pas depuis le port ST4 mais directement depuis le port RS232. Je passe ensuite sur Skysafari pour aligner la monture, et tout le reste pourra se faire directement depuis l'App de l'ASiAir (Choose Object et Goto). Je fais quelques tests de plate-solving, ça fonctionne parfaitement et réaligne automatiquement la monture sur Skysafari. Je lance ensuite l'autoguidage, qui est basé sur l'interface de PHD2, je ne suis donc pas dépaysé. Je pointe une étoile, j'appuie sur le bouton guidage et il fait automatiquement la calibration puis démarre l'autoguidage. A noter que l'ASiAir gère parfaitement le dithering entre les poses. On peut paramétrer le décalage en pixels et le temps de stabilisation avant de reprendre les poses. Voici une image de l'écran. On y voit l'image de M51 (pris juste au-dessus de Paris, ne m'en veuillez pas !!), le graphe d'autoguidage, et des infos comme la température du capteur, l'histogramme de l'image, etc.. Résultat de 10 poses de 60s au gain maxi, avec filtre L : bon c'est pas terrible hein ? Bah je suis déjà content de sortir ça à 3 km de Paris Je passe ensuite aux choses sérieuses. Je définis les filtres de la roue à filtres et je peaufine les paramétrages divers. Un essai sur M57, avec 2 poses de 180s en halpha avec retrait des darks de 120s (d'où la sous-correction sur l'ampglow à droite) : Je termine enfin la soirée par une série de 20 poses de 120s en Halpha sur NGC6888, suivis automatiquement par 10 darks. Et le tout en visualisant l'ensemble sur la tablette depuis mon lit bien au chaud !! Ce soir j'ai récupéré les images directement sur mon PC depuis le Wi-Fi en me connectant à l'ASiAir (mais il est possible aussi de transférer le contenu de la micro-SD) et réalisé un traitement rapide sous SiriL. 20 images de 120s en halpha, 20 darks. Aucun flat ni offset. Bon c'est pas l'image du siècle bien sûr, c'est pris juste au-dessus de l'horizon de Paris, mais le filtre halpha fait quand même des miracles ! Conclusion : Alors là je dois dire que cet ASiAir va au-delà de mes espérances. Le couple ASiAIR + Skysafari est fantastique ! Et le tout sans fil, bien au chaud Dans quelques semaines sortira le moteur de MAP ZWO qui est déjà pris en charge par l'ASiAir, on aura alors un ensemble entièrement autonome piloté à distance depuis la tablette. Tout est très simple à paramétrer pour un néophyte, En une soirée seulement, sans prendre connaissance de la notice, j'ai pu sortir une image avec autoguidage, dithering et pilotage de la monture + plate-solving. Je vais maintenant me pencher à fond sur les différents manuels disponibles sur le site de ZWO pour voir un peu plus les quelques petites subtilités (comment reprendre une pose le lendemain grâce au plate-solving par exemple) A noter que l'ASiAir pilote maintenant depuis la dernière version les APN Canon et Nikon, ça serait bien si ZWO prenait en compte le pilote ASCOM du A7S pour l'intégrer également, je pourrais alors revendre le Lacerta M-GEN En tout cas mon boîtier SkyBT ne me sera plus d'aucune utilité puisque l'ASiAir se comporte comme un SkyFi (qui est sensiblement au même prix d'ailleurs !) pour piloter la monture depuis SkySafari... ASIairPRO_fr.pdf
    1 point
  2. Bonjour / Bonsoir à toutes et tous 😀 J'ai décidé de faire ce test après qu'on m'ait demandé des retours sur certains points de cette lunette sur Discord, sur le serveur de la Communauté Astro. Ce sera aussi une sorte de compte-rendu personnel de mes débuts avec ce matériel. 1) Explications Comme c'est mon premier poste par ici, je me permets une petite présentation : Ma petite histoire : J'ai 20 ans et je suis étudiant en licence de physique. Je pratique l'astrophoto depuis 3 ans et demi. Mon matériel jusqu'à très récemment était un Canon 1300D, avec une Star Adventurer, avec en objectif le 18-55mm fourni et 2 objectifs anciens , un Nikon 50mm, un Tokina 70-210mm puis Canon EF 75-300mm f/4-5.6 III (je m'en sers de comparatif dans ce test). Depuis septembre 2021, j'ai progressivement acheté du matériel, allant de la caméra planétaire et un mak90, à un 450D défiltré partiel. Et enfin, j'ai eu pour mes 20 ans un newton SW 200/1000mm sur eq6. Le choix de la Evoguide 50ED : Pendant que je m'équipe avec ce nouveau matériel, j'ai décidé qu'il me fallait pouvoir faire de l'autoguidage sur mon 200/1000. J'avais alors la caméra planétaire mais il me manquait l'optique pour. Puis il m'est venu l'idée de remplacer mes objectifs par une lunette. En effet, je ne peux pas avoir mon gros matériel avec moi la semaine dans ma chambre étudiante, et je commençais à ressentir le besoin d'upgrader mes objectifs dont la qualité d'image reste bien en deçà de ce qu'on peut voir sur internet... Je suis alors tombé sur la 50ED, qui me permettrait de remplir ces deux fonctions pour un prix correct. C'était aussi un point important, je n'avais pas la possibilité d'acheter une lunette apochromatique doublet, triplet ou plus, ni un objectif de qualité, mon budget devenant assez serré. C'est donc pour faire de l'autoguidage (partie que je n'ai pas encore pu tester) et la photo sur un petit setup que je me suis tourné vers la 50ED. Qu'est-ce que la Evoguide 50ED ? Mais du coup, qu'en est-il sur le papier de cette lunette ? C'est une lunette de chez Sky-Watcher, apparemment seule dans sa gamme, mais on peut peut-être la considérer comme la petite sœur de la 72ED , conçue comme une lunette guide ou chercheur. Sa longueur focale est de 242mm et son diamètre est de 50mm. On a donc un rapport focale/diamètre de f/4.8. Sa sortie est en 31.75mm avec un filetage T2, adaptée pour les caméras et oculaires 1.25" Sa particularité est d'avoir une lentille ED à 2 éléments en verre S-FLP53 (d'après Pierro-Astro), c'est-à-dire une conception similaire à une lunette apochromatique comme la 72ED. Elle a donc à priori un faible chromatisme. Mais il n'y a pas de correcteur de champs, son image étant alors déformée sur les bords. Il existe cependant des aplanisseurs de champs dédiés à cette lunette, la transformant en "astrographe". Il y en a un conçu par Sky-Watcher, que je n'ai pas pris car son back focus n'est que de 17.5mm (incompatible avec un apn donc) et le Starizona EVO-FF Field Flattener. Qu'est-ce que le Starizona EVO-FF Field Flattener ? Le Starizona EVO-FF Field Flattener est un correcteur/aplanisseur de champ de Starizona, trouvable chez Pierro-Astro, qui permet de corriger le champ de la 50ED, et qui est adapté pour des capteurs allant jusqu'à la taille d'un capteur APS-C. Son avantage sur le correcteur de champ de Sky-Watcher est que son back-focus est de 55mm, adapté pour un apn comme mes Canon. Il est en 31.75mm et s'introduit à l'arrière de la lunette, sans l'allonge. J'ai d'ailleurs été surpris de voir qu'il est muni d'un filetage femelle T2 avec un joint, pour se visser à l'arrière de la lunette. Avec le correcteur de champ, on obtient un champ de vue de 6.4° d'après Starizona. Le prix : C'est selon moi le point important de cette lunette : offrir un équivalent à une lunette apochromatique pour un petit prix. En effet, ses caractéristiques la rapproche d'un William Optics AP 51/250 RedCat 51 OTA qui est un triplet trouvable à .... minimum 920€. Elle est donc trouvable en deux configuration : avec support pour chercheur embase standard ou avec queue d'aronde pour monture vixen. On trouve la première autour de 225€ et la deuxième autour de 239€ . L'aplanisseur de champ Starizona est lui autour de 119€ (celui de SW est à 79€) (prix Pierro-Astro). Dans mon cas, j'ai acheté dans les petites annonces du site d'en face la 50ED à 190€. C'était la version avec embase chercheur, j'ai donc acheté pour 30€ à un astram la base avec queue d'aronde (très difficile de trouver une base adapté et celle de la 50ED n'est pas en vente seule). J'ai ensuite acheté l'aplanisseur à 119€ neuf cher PA. Le tout m'aura donc coûté 339€ (en neuf, cela aurait été 358€ ). Pour comparer, une 72ED neuve avec correcteur x0.85, c'est 628€ (PA), une Askar FMA 180mm F/4,5 (40/180mm), c'est 449€ (planete-astro.com), une Askar FMA 230mm F/4,6 (50/230mm), c'est 819€ (PA) et une TS-Optics 61/274 EDPH-II, c'est 907€ (PA) tandis qu'un objectif Samyang 135mm f/2 est à 578€ (Amazon). 2) Le matériel Je passe ici en revue la lunette et l'aplanisseur de champs : La 50ED : Elle est normalement livrée dans un simple carton et dans du polystyrène prédécoupé. La personne à qui je l'ai achetée n'avait pas gardé le carton et m'a envoyé la lunette dans son bloc de polystyrène entouré de beaucoup de papier bulle. Elle vient avec sa base, qui est une embase pour chercheur, et deux anneaux de support, une allonge 31.75mm (avec filetage T2) d'environ 38-40mm pour les oculaires et caméras. Ses lentilles ne sont pas directement à l'entrée du tube, qui fait office de pare-buée. Il y a un filetage juste devant les lentilles, qui semble être en 2 pouces pour des filtres. Le jeu de lentilles se trouve donc à l'arrière de la partie noire de la lunette, le reste du tube étant vide. La mise au point se fait avec un système hélicoïdal (la partie verte) très précis et très "doux". Il y a aussi un bouchon métallique pour l'avant avec du feutre à l'intérieur pour ne pas rayer le tube et un bouchon en plastique à l'arrière. Son poids est de 541g “nu”. Sa longueur est de environ 265mm avec l'allonge (225mm sans). Sa largeur est de 55mm en moyenne. Avec les anneaux (64mm de diamètre intérieur) et la queue d'aronde, le tout fait jusqu'à 100mm de large et 130mm de haut (avec les vis des anneaux). J'ai utilisé les anneaux qui étaient avec l'embase chercheur pour les fixer à un support bricolé sur le newton 200/1000 pour l'autoguidage. J'utilise donc la base avec queue d'aronde qui a les mêmes anneaux, montés sur une queue d'aronde muni de très nombreux trous pour les anneaux, ainsi de deux trous filetés au pas Kodak. Avec la queue d'aronde, on est 1023g. (il y avait les bouchons là) Le Starizona EVO-FF : Il est livré dans une toute petite boîte cubique (5,5cm) avec l'aplanisseur dans un sachet en plastique, une notice, et deux bouchons en caoutchouc. L'avant est un tube en 31.75mm qui s'insert dans la lunette, avec un filetage pour filtre 1.25", et son arrière est un filetage T2. La lentille se trouve à ras à l'arrière, sans dépasser. Il y a un filetage T2 femelle vers l'avant pour le visser à la lunette, avec un joint en caoutchouc. L'aplanisseur rentre tout juste dans l'arrière de la lunette. C'est tellement juste qu'il vaut mieux enlever les vis de serrage (qui ne servent pas comme on le visse au T2) et l'air dans le tube fait résistance et sort difficilement (si on ne pousse pas, l'aplanisseur revient un peu en arrière). Une fois vissé, il tient extrêmement bien et se voit à peine, la partie ressortant faisant moins de 5mm. On peut le laisser en place sans soucis, et mettre son bouchon à l'arrière. Son poids est de 36g (sans bouchon) (il n'est pas vissé complètement sur la dernière) Avec un APN : Pour fixer un apn, il suffit d'une bague d'adaptation T2 (M42) vers l'appareil. Dans mon cas c'est une bague T2-EOS. Le back-focus de l'EVO-FF étant de 55mm, il n'y a pas besoin d'autres bagues (l'adaptateur T2-EOS fait 11mm et le capteur se trouve 44mm dans l'apn). Il est possible de mettre l'allonge fourni avec la lunette derrière pour avoir une allonge d'environ 40mm. C'est limite pour les caméras de 17.5mm de back-focus, mais avec une caméra de 12,5mm de back-focus, on peut ajuster avec un adaptateur 31.75mm. A tester Le poids avec mon Canon EOS 450D est de 1590g. On a ainsi une lunette avec apn faisant 1.6 kg, ce qui tient parfaitement sur une Star Adventurer par exemple. L'APN est très solidement fixé et le tout tient parfaitement en le vissant sur la bague T2. Comme l'aplanisseur est dans la lunette et qu'il n'y a pas besoin d'allonge, l'apn se retrouve vissé directement sur la lunette et le tout a une longueur d'environ 280mm. Transport et stockage : J'ai acheté une valise en aluminium de 320x150x230mm (Toolcraft 1409407) à une vingtaine d'euros, où j'ai mis le polystyrène de la lunette. J'ai dû découper de 1 à 2cm de chaque côté en largeur pour bien l'insérer. Cela fait un transport léger, compact et solide de la lunette et de quelques accessoires. Voilà, si vous cherchiez ce genre de valise pour la 50ED, qui n'a malheureusement pas sa propre valise comme la 72ED. Accessoires : Comme déjà dit, on a le droit à une allonge, mais au final, elle n'a pas besoin de beaucoup plus d'accessoires. J'ai imprimé en 3D un masque de Bahtinov (trouvé sur Thingiverse) qui s'insert dans le tube. Il est tout petit et a été imprimé en 45min. Il fonctionne très bien sur les étoiles très brillantes mais la figure de diffracton est rapidement trop petite sur des étoiles moins brillantes. J'utilise des résistances chauffantes pour objectif et petite lunette, ce qui marche plutôt bien. 3) Les tests Tous les tests ont été fait dans un petit village du Sud de l'Essonne, avec l'éclairage du village allumé, mais masqué par les arbres et la maison qui couvrent tout le Nord, l'Ouest et le Sud. Le ciel est noté Bortle 5 sur mon application. Je peux observer tout au dessus de 45° de hauteur, et au dessus de 20° de hauteur côté Est. Orion était observable à travers les branches des arbres au Sud. Et la Voie Lactée est observable à l'oeil nu. Bref un ciel moyen de campagne. Pourquoi faire tous ces tests ? J'ai décidé de faire tous ces tests, premièrement car s'amuse bien 😁, mais aussi car j'ai eu du mal à trouver des retours sur cette lunette. Il y a quelques vidéos sur Youtube, mais seulement une détaillée et de qualité, traitant de l'aspect astrophoto (de la chaîne Andrea Minoia). Mais surtout, il y a assez peu de retours sur les forums. Je ne l'ai jamais vu recommandée et j'en ai surpris quelques-uns en proposant la 50ED comme solution photo. Et peu de photos au final, à part celles proposées par Starizona. Je veux donc la tester et partager mes tests car je pense que cette lunette à beaucoup de potentiel. - Sur "banc d'essai" : J'ai mené quelques essais dans mon garage. Avant je l'ai un peu testé comme un objectif photo "de jour" Niveau poids, c'est supportable mais la mise au point est vraiment difficile lorsqu'on porte la lunette car elle est très précise, et il faut beaucoup tourner la bague hélicoïdale pour faire la mise au point sur à peine quelques centimètre. Pas pratique mais ce n'est pas sa fonction 😅. Le résultat est clair, l'image est assez lumineuse et sans déformation. La zone de netteté est très petite. Je vous laisse mon chat et le chien du voisin pour juger du résultat, faite avec le 450D défiltré (mise au point bof, sans retouche, ni balance des blancs, mais je l'ai redimensionné pour éviter les grosses images) : Test du chromatisme et de la déformation de l'image : J'ai testé dans mon garage le chromatisme et la déformation de l'image, que j'ai comparé avec mon Canon EF 75-300mm f/4-5.6 III. J'ai créé une image noir avec 9 points blancs, en carré , avec le point centrale un peu plus grand. Mon téléphone ayant un écran oled, je peux afficher l'image avec un contraste parfait (noir réellement noir). Je le place dans un meuble au fond de mon garage, l'image en pleine écran, la luminosité au maximum, et je place la lunette sur l'EQ-6 à l'autre bout du garage, avec le Canon 450D dessus, et l'aplanisseur de champ, à une distance de 10.5 mètres : Je cadre ensuite points exactement au milieu de l'image, en utilisant le viseur de l'apn . Je fais la mise au point avec le maque de bahtinov. La figure de difraction est alors quasi invisible mais je peux voir 3 petits points assez nettes quand la mise au point est bonne. Elle ne m'a pas l'air parfaite après coup, mais c'est assez dur de l'avoir parfaitement quand on n'a pas les figure de diffraction. Je n'y touche plus et prends une photo avec les ISO à 100, et l'exposition à 1/5s. Cela donne ceci : Je cadre ensuite les points au centre, en haut et en bas, puis à droite et à gauche au milieu, puis dans les coins de l'image. J'ai ensuite croppé et mis côte à côte les points obtenus : J'installe ensuite mon objectif Canon EF 75-300mm f/4-5.6 III sur le 450D, à 250mm de focale, ouvert à f/5.6, que j'installe sur une rotule et sur mon trépied de Star Adventurer. Je le mets juste à côté de l'EQ-6, à la même distance, et je fais exactement la même procédure (excepté la mise au point faite sans masque). J'obtients cette image composition des points : Les deux images côte à côte nous donne ceci : On constate que les points sont un peu partout déformés avec un léger halo. Cette déformation est un peu plus forte sur le bords gauche et dans les coins. Elle a l'air d'être dans la même direction sur un peu toute l'image. C'est possiblement un problème de mise au point ou de collimation. Par rapport à l'objectif Canon, les points sont un peu plus ponctuels au centre mais sont de la même forme sur les bords. Le point qui diffère principalement est le chromatisme : on a quasiment pas de chromatisme ! Comparé à l'objectif Canon qui bave bien fort, c'est très propre ! En zoomant fort, on remarque un léger chromatisme, avec un côté un peu vert ou bleu ou rouge, mais c'est léger : au centre : Dans le coin inférieur gauche : Test du vignetage : J'ai ensuite fait un flat en mettant une image blanche sur mon téléphone devant la lunette, afin de voir si on avait du vignettage. On est à 1/250s en temps de pose et 100 ISO (j'ai un peu monter le contraste pour mieux voir le vignetage) : On a un léger vignetage dans les coins, qui apparaît sur les prises longues (j'ai fait une série de photos de 30min sur Andromède et au traitement, le vignetage apparaissait). Ca reste je trouve assez gérable. On voit bien que la taille APS-C du capteur est la limite niveau vignetage. Un FF ne passerait pas. Equilibrage sur EQ-6 : Petit test à part pour répondre à une question sur Discord : l'équilibrage de la 50ED sur une grosse monture comme l'EQ-6. Sans contrepoids, même avec l'allonge de la barre, ce n'est pas équilibré. J'ai testé un poids de 5kg et ça ne passe pas non plus. Mais j'ai eu l'idée de scotcher le contre-poids de 1kg de la Star Adventurer et ça marche : Plus sérieusement, un poids d'altère de 1kg ferait l'affaire. - Observation : J'ai pu observé un peu avec un oculaire Plössl de 30mm, un filtre UHC, et elle est pas mal du tout. L'image était propre, je n'ai pas vu de défauts optiques et j'ai bien distingué Andromède, Orion et les Pléiades. A travers l'APN, il m'est arrivé de voir un léger et fin halo bleu. Rien de plus, mais j'aime bien l'image qui en résulte. A voir ce qu'on pourrait observer de plus avec, la focale restant assez courte. A tester, peut-être que sous un bon ciel, on pourrait observer les Messier (avec un oculaire de 25mm, on serait à x10, ce qui la rapproche de jumelle 10x50) - En astrophoto : J'ai pu faire une séance astrophoto le soir du 21 janvier 2022. Le ciel était clair, avec une très légère brune, et il faisait autour -1°C / 0°C, avec du gel sur mon 200/1000 vers 23h. J'ai installé rapidement la Star Adventurer sur son trépied dédié, avec une mise en sation assez correcte, et j'ai commencé à tester la lunette sur quelques objets sympas : L'équilibrage n'est pas parfait au niveau de la queue d'aronde, la lunette penchant du côté apn. Je pense qu'il faudra que je revisse les anneaux plus en avant de la queue d'aronde. Voici une série test avec mon Canon 1300D (non défiltré), sans filtre, avec 30s de temps de pose, ISO 800 (aucune retouche, ce sont les brutes passé de CR2 en jpg) : (Double Amas de persée, M33, les Pléiades) Personnellement, je n'ai jamais eu des étoiles aussi nettes avec mes objectifs de grandes focales (mon 70-210 et mon 75-300). Les brutes me plaisent énormément ! J'ai ensuite procédé à une série de 19 photos de 120s, avec le 450D, et un filtre Optolong L-Pro. Un brute ressemble à ça : J'ai ensuite traité l'image avec 50 darks (de 180s, issus de la photo suivante), 20 flats et 50 offsets. C'était mon premier traitement sous Siril (puis ajustement sous Photoshop). Elle est un peu crop à cause du vignetage : Le résultat est juste incroyable pour seulement 38min de poses ! J'avais déjà fait Andromède en 2020, mais là, rien avoir, c'est tellement plus propre... Pour comparer, voici mon image au Tokina 70-210mm, à 210mm, f/5.6, avec le 1300D, sur Star Adventurer, sous un bien meilleur ciel (dans le Lot), 55x210s, 25 darks, 40 flats, 40 offsets, traités sous DSS et Photoshop : C'est le jour et la nuit.... On notera la déformation assez visible sur le bord de l'image du Tokina.... qui n'est pas sur la lunette ! L'aplanisseur de champ marche très très bien sur toute l'image ! J'ai ensuite fini la soirée avec un test de mon filtre Astronomik Ha 12nm sur NGC 1499, Nébuleuse Californie. C'était ma première séance sérieuse avec un filtre Ha. J'ai donc laissé tourné un peu près deux heures. Je n'ai pas fait de couleurs (je complèterais peut-être plus tard) c'est donc uniquement du Ha. Il y avait la Lune (ma prise était de minuit à 2h) bien brillante, pour ça que je n'ai fait que du Ha. Il y a eu aussi de la buée sur la lunette. Je l'ai viré très vite au sèche-cheveux et j'ai laissé des résistantes chauffautes dessus. Il aura fallu bien 1h30 avant d'avoir de la buée. Il n'y a pas eu de dépôts de givre sur la lunette au cours de la soirée, sûrement à cause de mes interventions au sèche-cheveux, et des résistances. Bien sûr, toujours avec le 450D défiltré, on a ici 38x180s, 50 darks, 20 flats et 50 offsets, traitement sous Siril et Photophop. Voilà un brute : Et le résultat : Ici on atteint un peu les limites de mon suivi mais le résultat est aussi génial ici ! Bon le final est assez bruité masi j'imagine que c'est lié à mon traitement et au Ha... Je ne sais pas trop Je suis fier de mes captures et je suis pleinement satisfait de cette lunette ! 🤩 4) Conclusion Eh beh, c'était long, non ? 😅 J'ai vraiment beaucoup aimé faire ce poste ! Une expérience sympa 😄 J'espère que ça vous a aidé ! Pour conclure, d'un point de vue personnel, je suis complètement emballé par ma lunette ! Fini les étoiles baveuses, j'ai enfin des points blancs ! Ils ne sont pas parfaits, j'imagine qu'un triplet à 800€ en aurait de meilleurs, mais par rapport à ce que j'ai vu de fait avec des 72ED ou 80ED par exemple, je trouve le piqué très bon ! Aussi, elle est plus lumineuse que mes objos et je le ressens sur les prises de vue, on a vite plus de détails. En clair, je pense que c'est la meilleure solution pour mon setup léger ! Et à ce prix là, je suis persuadé que c'est imbattable. Enfin l'aplanissur de champ de Starizona rempli parfaitement son rôle et est très bien pensé ! Solide et discret, on l'installe et c'est bon ! Bref, je suis ouvert à toutes les questions, et à des critiques aussi 😊 J'espère vraiment que ça pourra en aider certains et certaines ! Ou au moins donné une idée de ses capacités, sachant qu'en plus, c'était un test presque à la sortie de la boîte de la lunette. Je vous remercie d'avance de m'avoir lu et j'ai hâte de discuter avec vous. Paul
    1 point
  3. Bonsoir à tous, Je viens de retrouver dans mes carton astro, un exemplaire du supplément de l'Astronomie Populaire de Camille Flammarion édition de 1882 acheté une bouchée de pain en brocante il y a quelques années. Je ne sais pas si c'est une première édition mais les images et les traités développés sont d'anthologie. Je vous fais profiter de quelque photos de cette superbe œuvre ou l'ont y retrouve entre autre, une superbe lithographie en bleu de la nébuleuse d'Orion Ce livre va devenir mon livre de chevet pour les futures nuits nuageuse. Bon ciel a tous Fab
    0 point
  4. GLOSSAIRE TECHNIQUE ASTRO POUR DÉBUTANTS - INTRODUCTION - Ce modeste glossaire est destiné aux débutants qui désirent se familiariser avec le matériel et certains termes techniques couramment utilisés en astronomie amateur. Il ne prétend donc pas faire un inventaire complet, et reste ainsi volontairement limité à l'essentiel. Les mots suivis d'un astérisque (*) renvoient à une définition. Dernière mise à jour : 17/03/2023. Les photos pouvant être soumises à droit d'auteur sont sourcées. - A - aberration : en optique les rayons lumineux provenant de l'objet observé peuvent être déviés, altérés, aussi bien par les conditions atmosphériques que par l'optique et la mécanique d'un instrument, donnant une image non conforme. Les principales aberrations rencontrées en astronomie en général, et donc en astrophotogaphie, sont le chromatisme*, la coma*, et le vignetage*. achromatique (abrév. achro) : pour lunette achromatique : type simple et économique de lunette astronomique. Voir à lunette astronomique. Airy : figure d', tache d', disque d' : image de diffraction obtenue à l'oculaire*, en focalisant de façon optimale un point source lumineux, obtenue sur une étoile, révélant éventuellement un défaut de collimation* ou une autre cause grâce à des irrégularités dans la figure. On se sert donc de cette image dans le but de remédier, si possible, aux causes : moins les défauts révélés par la figure d'Airy seront prononcés, plus l'image sera proche du point source. Note : même si ces termes deviennent génériques, de manière stricte les termes de tache ou figure d'Airy s'appliquent à proprement parler aux réfracteurs, qui sont dépourvus d'obstruction centrale, sinon dans le cas des réflecteurs (télescopes) on devrait simplement parler d'image de diffraction. année-lumière ( abrév. A.-L.) : unité de mesure utilisant la distance parcourue en un an par la lumière. Note : les astronomes professionnels utilisent aussi le parsec*. apochromatique (abrév. apo) : type de lunette, de système optique, corrigeant tout ou partie du chromatisme*. Voir à lunette astronomique. araignée : système de fixation du miroir secondaire d'un télescope. Voir à secondaire*. Source : astroshop.fr ascension droite (abrév. AD : RA en anglais, Right Ascension) : donnée comprise dans le système de coordonnées équatoriales et horaires. L'autre coordonnée est la Déclinaison*. astram : familier, contraction de astronome amateur. astrophotographie : technique d'observation et de traitement logiciel d'images obtenues par une caméra numérique ou un appareil photo numérique (APN), tendant à remplacer la photo argentique. Synonyme : imagerie. Une caméra, ou un appareil photo, vient remplacer l'oculaire, couplée à un ordinateur pour enregistrer les images prises avec un temps de pose calculé selon la luminosité des objets. Les images devront ensuite être traitées sur ordinateur avec de puissants logiciels. On peut y inclure le visuel assisté*, qui est une forme d'astrophotographie très rapide. La photographie à poses de plus d'une minute environ exige une monture équatoriale, cette dernière compensant la rotation du champ. Les images d'un objet peuvent être uniques, ou bien empilées (empilement, ou stacking en anglais). Pour les longues poses, un complément de précision dans le suivi peut devenir nécessaire, ce qu'assurera l'auto-guidage*. Note : L'astrophotographie exige de longues poses pour les objets du ciel profond, et de ce fait demande une monture très stable sur-dimensionnée par rapport à l'observation visuelle, limitant la taille de l'instrument optique, et un très bon suivi* assuré par un Goto* performant, suivi éventuellement renforcé par l'auto-guidage. Elle exige aussi un travail de traitement numérique, après la séance sur le terrain, souvent long et complexe, demandant une connaissance approfondie du logiciel utilisé. auto-guidage : procédé complémentaire de correction du suivi. En astrophotographie longue pose, une légère dérive du suivi due à de minimes défauts mécaniques risque d'apparaître, que l'auto-guidage viendra corriger périodiquement. Il s'effectue à l'aide d'une seconde caméra montée sur une lunette-guide ou montée sur un diviseur optique, et couplée au logiciel de suivi. avi : format vidéo d'empaquetage (ou d'encapsulage), qu'on retrouve en informatique sous la forme d'un fichier. azimutal (abrév. AZ) : instrument, monture* mobile autour d'un axe horizontal et d'un axe vertical. Ex : monture azimutale. - B - barillet : support du miroir primaire d'un télescope. Le barillet, selon les modèles, fait reposer le primaire sur plusieurs points, afin d'atténuer au maximum la déformation du miroir par son propre poids, il devient donc un élément de plus en plus important selon la taille (et le poids) du miroir. Sur la photo on voit aussi les brides servant à retenir le miroir. Source : teleskop-express Barlow, lentille de Barlow : accessoire optique du nom de son inventeur, couramment utilisé, aussi bien en visuel qu'en astrophoto, augmentant le grossissement final en augmentant virtuellement la focale de l'instrument. L'accessoire contient une seule lentille dans le cas de la Barlow d'origine, ou plusieurs lentilles (pour notamment au passage corriger certaines aberrations en photo) dans le cas des extendeurs de focale qui en sont dérivés. Il faut savoir que cette lentille fait souvent partie intégrante des oculaires, notamment ceux de petite focale. De façon générique et consensuelle, on peut continuer de parler de Barlow pour les extendeurs de focale. La Barlow se loge dans le porte-oculaire comme un oculaire, et l'oculaire vient se loger dans la Barlow. Note : Selon les modèles, le grossissement obtenu est ainsi multiplié par 1,5X, 2X, 3X, 4X, ou 5X, sans altération de l'image si la Barlow est de qualité. Cet accessoire permet de ce fait de doubler le nombre de grossissements disponibles à moindre frais d'un set d'oculaires, et donne l'occasion de limiter le nombre d'oculaires, d'où son grand succès. Illustrations : 1. Televue 2X 2. Televue Powermate 4X 3. Celestron 2X 4. Explore Scientific 2X 1. 2. 3. 4. Sources :1.OU 2.OU 3.Clef des Etoiles 4. optique-pro barlowter : barbarisme souvent utilisé, par convention et simplification, pour désigner l'action d'ajouter une Barlow à un oculaire. Exemple : un oculaire barlowté. binoculaire : s'applique à un instrument possédant deux oculaires et deux réfracteurs jumelés parallèles, telles les jumelles. La tête binoculaire, par contre, est un accessoire optique supplémentaire qui utilise l'image d'origine unique d'un instrument classique, en la divisant en deux par un prisme. C'est un dispositif utilisant deux oculaires, comme pour les microscopes, se fixant au porte-oculaire d'un télescope ou d'une lunette, permettant un bon confort visuel, très apprécié par certains amateurs. Illustrations : 1. Binoculaire Televue Bino Vue 2. Jumelles Kepler 25x100 BT 3. Jumelles Vixen BT-81S-A 1. Tête binoculaire => 2. Jumelles astronomiques => 3. Jumelles astronomiques : Sources : 1.OU 2.OU 3. idealo.fr bonnette : rondelle de caoutchouc attachée autour de l'oculaire, servant à guider l'œil et à protéger des lumières extérieures. Tous les oculaires n'en possèdent pas. Source : Pierre-Astro brides : concerne le miroir principal d'un télescope, retenu par des brides afin d'éviter qu'il ne chute par retournement lors d'un transport. Note : les brides des miroirs des Newton ne doivent pas serrer le miroir, comme c'est le cas avec certains télescopes sortis d'usine, mais juste le retenir à un millimètre de distance, afin d'éviter toute déformation nuisible à la qualité des images produites, le miroir devant pouvoir se dilater et se contracter au gré de la T° ambiante. Il convient donc, si besoin, de « débrider » le miroir juste après achat en dévissant légèrement les brides. La photo montre un miroir primaire de Newton disposé sur son barillet, retenu par des brides de sécurité. Source : company7 - C - caillou : familier, désigne un oculaire*. calibration : opération complexe effectuée par les astrophotographes visant à optimiser les images obtenues par les capteurs et l'optique, en éliminant certains défauts. caméra : La caméra numérique, comme l'appareil-photo numérique (APN), est l'outil de base servant à l'imagerie en astrophotographie, dont fait partie le Visuel Assisté*. Elle offre, selon les modèles, des caractéristiques différentes en terme de sensibilité et de résolution (nombre de pixels, taille des photosites), et de champ (taille du capteur). Le choix de la caméra dépend du budget, du type d'objets à observer (planétaire ou ciel profond), de l'instrument optique utilisé. Elle peut être de type monochrome (noir et blanc) ou couleurs, refroidie ou non, de forme différente pour convenir au type de porte-oculaire. Les monochromes offrent davantage de sensibilité, par conséquent permettent des temps de pose plus courts. La caméra se place dans le porte-oculaire, en lieu et place d'un oculaire. Note : Les caméras puissantes diffusent de la chaleur pouvant nuire aux images, d'où l'existence de caméras à refroidissement intégré. Illustrations : 1. Atik Horizon II monochrome 2. ZWO ASI224 MM couleur 3. ZWO ASI533 MMC Pro couleur 4. Altaïr Hypercam 294C couleur 1. Caméra Atik type bâton => 2. Caméra ZWO => 3. Caméra ZWO (refroidie) => 4. Caméra Altaïr => Sources : 1. La Clef des Étoiles 2. Astroshop 3. Astroshop 4. altairastro.com carrousel : autre terme pour roue à filtres*. Cassegrain : type de télescope devenu générique, du nom de son concepteur, réduisant considérablement la longueur du tube, par rapport au système simple de Newton, mais paradoxalement, par un renvoi multiple de l'image, augmentant sensiblement la longueur focale* totale. L'image est renvoyée du miroir primaire par un miroir secondaire vers une ouverture au centre du même primaire, où se trouve le porte-oculaire. De nos jours une lame de fermeture est disposée à l'entrée du tube principal sur tous les systèmes Cassegrain, afin de corriger certaines aberrations optiques. Le simple Cassegrain d'origine a été amélioré au profit du Schmidt-Cassegrain* (abrév. SC) ajoutant une lentille (lame de Schmidt) à l'entrée du tube, avec, au fil du temps, des dérivés tels que le Maksutov, le Ritchey-Chrétien, le Dall-Kirkham. Note : ce système est très prisé mais coûteux, et pour l'amateur limite le diamètre à cause du poids et de la structure. De plus, l'obstruction* est plus importante que sur un Newton. Schéma : Source : wikipédia, Auteur : Szõcs Tamàs Tamasflex catadioptrique : nom générique, classe de télescope combinant miroirs et lentilles, tels le Schmidt-Cassegrain*, le Maksutov*, le Ritchey-Chrétien*, le Dall-Kirkham*. catalogue (d'objets) : il existe de nombreux catalogues, qui sont des listes d'objets répertoriés, en partie redondants (les objets peuvent se retrouver dans deux ou plusieurs catalogues), soit généralistes, soit spécialisés dans un type d'objets particulier, utilisés par la communauté scientifique et par les amateurs. Un même objet porte ainsi des noms différents. Exemple avec Messier 51, la Galaxie du Tourbillon, qui est aussi désignée par NGC 5194, PGC 47404, UGC 8493, etc.. Pour l'amateur, les catalogues utilisés sont principalement : - Messier (M) : nébuleuses, galaxies, amas d'étoiles (110 objets), - NGC : nébuleuses, galaxies, amas d'étoiles, beaucoup plus complet que Messier, - SAO : étoiles, - HIP : étoiles, - HR : étoiles. En sus des catalogues précédents, pour les instruments plus importants (ou en astrophotographie) : - IC : nébuleuses, galaxies, amas d'étoiles (complète NGC), - UGC : galaxies, - PGC : galaxies, - Abell : amas de galaxies, - Caldwell (C) : nébuleuses, galaxies, amas d'étoiles, - PK : nébuleuses planétaires. chaise d'observation : accessoire utile de confort lors des observations, à l'assise réglable selon la hauteur du porte-oculaire. Note : Il existe des chaises spécialement conçues pour l'astronomie, mais une simple chaise de repassage, moins coûteuse, peut faire l'affaire. 1. Chaise astro artisanale => 2. Chaise de repassage => Sources : 1. SD 2. Amazon champ : angle de vision offert par un instrument, un oculaire, donné en degrés. On distingue le champ réel et le champ apparent. L'oculaire vient finaliser l'image d'un instrument en donnant un champ réel variable selon ses caractéristiques et celles de l'instrument. Le champ apparent de l'oculaire est son angle de vision, qui peut varier selon les modèles de 40° environ à 120°. Note : on considère que le grand champ débute à 65°, ce grand champ apporte plus de confort en élargissant le champ de vision, mais il conviendra de ne pas sacrifier la qualité optique au champ. Important : par les lois de l'optique, plus le grossissement est grand, plus le champ réel (et la luminosité !) se réduit. chercheur : petite lunette, droite ou à renvoi coudé, à faible grossissement, fixée sur un instrument, servant à repérer une zone précise, ou directement l'objet convoité, avant d'utiliser l'instrument principal. Selon la formule optique du chercheur, l'image sera inversée ou redressée. Note : il utilise un réticule qui, selon les modèles, peut-être éclairé. De plus en plus, on lui préfère le viseur*, plus intuitif, mais ils peuvent aussi être complémentaires. 1. Chercheur éclairé droit => 2. Chercheur coudé 9X50 => Sources : 1.PO 2.Clef des Étoiles Cheshire : outil de collimation* du nom de son concepteur, extension de l'œilleton*, très souvent doté d'un réticule, à tube court ou long. Sa simplicité et son efficacité en font un outil de base très répandu et quasiment indispensable, servant à aligner les miroirs secondaire et primaire. Note : dans l'obscurité, le laser* de collimation* sera bien plus pratique mais pas forcément plus précis ni plus fiable. Le Cheshire est néanmoins utilisable dans l'obscurité, il suffit de faire passer de la lumière par l'ouverture sur le côté (cf photo). Cheshire long => Source : Astroshop chromatisme : aberration optique ajoutant des couleurs étrangères à l'image d'origine, due en premier lieu aux lentilles elles-mêmes d'un système optique, par conséquent dans les lunettes en astronomie. C'est le premier ennemi de tout système optique à lentilles (lunettes, jumelles, microscopes, etc...). Note : l'atmosphère, agissant comme un prisme bas vers l'horizon, peut aussi donner, cette fois de manière naturelle, du chromatisme aux étoiles et planètes situées proches de l'horizon. Les lunettes apochromatiques utilisent une formule optique élaborée (ajout de lentilles spéciales notamment), afin d'atténuer drastiquement les effets du chromatisme dû aux lentilles dans un système simple. En imagerie, on peut utiliser, de surcroît et si nécessaire, un correcteur de dispersion atmosphérique*. ciel profond (CP) : désigne les objets du ciel situés en dehors de notre système solaire. clarté : capacité d'un système optique de restituer la luminosité d'un objet : instrument, oculaire, Barlow, etc... Le maximum de clarté est recherché, gage de la qualité des lentilles. coating : terme anglais signifiant traitement (chimique), étape très importante dans la fabrication, assurant les améliorations des lentilles d'oculaires, de Barlow, de lunettes, etc.... Par exemple, un bon traitement contribue à éviter ou à atténuer les réflexions internes des lentilles provoquant du vignetage*. Un bon traitement coûte cher à la fabrication, et se retrouve par conséquent dans les optiques haut de gamme. collimation : opération essentielle, incontournable, consistant à aligner les miroirs secondaire* et primaire* des télescopes, en vue d'optimiser les images obtenues par l'instrument. Après un transport et juste avant une séance d'observation, l'opération doit être effectuée ou vérifiée sur le terrain, surtout pour le miroir primaire. Note : les tutoriels sur l'Internet sont nombreux, et les outils tels que l'œilleton*, le Cheshire*, le laser*, d'autres systèmes, sont à prévoir, isolément ou en combinaison. La collimation peut être effectuée ou vérifiée sur étoile, réelle ou artificielle. Très important : En premier lieu, une bonne collimation dépend aussi de toute la chaîne mécanique en amont : porte-oculaire, réducteur, araignée du secondaire, barillet du primaire, outils, et doit permettre de renouveler facilement l'opération à chaque sortie. Il faut donc des accessoires fiables et de qualité, de bons usinages, de bons serrages, afin d'assurer un alignement fiable des éléments, qu'ils soient mécaniques ou optiques. coma : type particulier d'aberration optique, déformant les images. Selon la focale de l'oculaire, ou en astrophoto, en rapport avec l'instrument utilisé, la coma peut être amplifiée au point de devenir gênante. Les étoiles prennent alors la forme dite de mouette, de façon de plus en plus accentuée au fur et à mesure qu'on se rapproche de la périphérie de l'image. Des correcteurs de coma, outils optiques de différents types, existent dans le commerce, pour pallier cet inconvénient. On remarque sur la photo ci-dessous que la coma augmente en s'éloignant de l'axe (source : Bertorello) : Correcteurs de coma => Sources : 1.OU 2.OU 3.astroshop.fr contraste : capacité d'un système optique à faire ressortir l'image par rapport au fond du ciel, et/ou des détails supplémentaires à partir de l'image principale, des couleurs. Le contraste fait partie des qualités recherchées chez un oculaire. Indépendamment, les filtres* permettent d'accentuer le contraste de certains objets, notamment les nébuleuses, par rapport au fond du ciel, et/ou de faire ressortir certains détails de l'objet lui-même. correcteur de dispersion atmosphérique : en imagerie, accessoire qui permet de corriger la dispersion de la lumière des astres lorsqu’ils passent à travers notre atmosphère, cette dernière agissant comme un prisme. Source : OU coulant : ouverture permise par le porte-oculaire. Le diamètre est exprimé en pouces (") ou en millimètres. De nos jours, il existe deux coulants principaux pour les instruments amateurs : le 2" soit 50,8mm, et le 1 1/4", ou 1,25", soit 31,75mm, avec les oculaires existant aux deux coulants. Les autres accessoires, comme les filtres, correcteurs, Barlows, lasers, existent de ce fait aux deux coulants. Note : les porte-oculaires sont le plus souvent équipés d'origine en 2", plus d'un réducteur permettant d'insérer des oculaires au petit coulant. Le grand coulant permet aux oculaires d'exploiter un champ apparent* large et très large à moyen et faible grossissement, et devient même nécessaire à partir d'un certain seuil, mais au détriment de la taille, du poids, et du coût. À grossissement moyen et surtout fort, le petit coulant est suffisant vu l'étroitesse de l'image obtenue. La première photo montre un oculaire Explore Scientific à champ apparent large de 82° de petite focale qui donnera un grossissement assez fort, utilisant le petit coulant qui est suffisant, la deuxième photo montre un oculaire Explore Scientific de 82° également, mais de grande focale, ainsi le champ réel obtenu oblige à exploiter toute l'ouverture du porte-oculaire, d'où l'utilisation du grand coulant. Noter la différence de taille. 1. Oculaire coulant 31,75mm => Oculaire coulant 50,8mm => Sources : 1.ES 2.ES CP : abrév. de ciel profond*. Crayford : du nom de son concepteur, type de porte-oculaire* utilisant la friction, et non pas une crémaillère. CROA : Compte-Rendu d'Observation Astronomique, rédigé par les astronomes amateurs sur les sites astronomiques amateurs, désirant témoigner de leur soirée, décrivant les objets observés, en vue d'échanges et de partages, d'idées d'observations, etc... - D - dark : type d'image spécifique obtenue en imagerie*. Cf Astrosurf Dall-Kirkham : type de télescope Cassegrain proche du Ritchey-Chrétien*, sophistiqué, composé d'un miroir primaire elliptique et d'un miroir secondaire sphérique. Instrument de type catadioptrique*, utilisé pour le visuel et en astrophotographie. Illustrations : 1. Takahashi Mewlon de 210mm 2. PlaneWave de 350mm Vue éclatée de Dall-Kirkham => Source : dark-star.it 1. Dall-Kirkham => 2. Dall-Kirkham de type Serrurier => Source : 1. maisondel'astronomie 2. optcorp.com débridage : action de débrider un miroir primaire, voir à brides*. déclinaison (abrév. DEC) : l'autre coordonnée équatoriale et horaire avec l'ascension droite*. dégagement, pour dégagement oculaire : traduction officielle de l'anglais eye relief*, exprimant en millimètres la distance maximale entre la lentille d'un oculaire et l'œil permettant d'embrasser tout le champ une fois la mise au point effectuée. Synonymes : tirage d'anneau, recul d'œil. Note : un dégagement de 20mm est une norme pour les porteurs de lunettes désirant garder celles-ci pour observer, mais il est aussi un élément de confort pour beaucoup d'observateurs observant sans lunettes. Un dégagement important entre environ 16 et 20mm sera par conséquent considéré comme un élément de confort sur les oculaires, surtout s'il est réglable comme sur les oculaires haut de gamme. diamètre : le diamètre d'un instrument est le diamètre de son ouverture, à savoir celui de la lentille frontale d'un réfracteur, ou du miroir principal d'un télescope. On exprime le diamètre en millimètres ou en pouces ("). 4" = 100mm 6" = 150mm 8" = 200mm 10" = 250mm 12" = 300mm 14" = 350mm 16" = 400mm 18" = 450mm 20" = 500mm 22" = 550mm 24" = 600mm Note : plus le diamètre est important, plus il reçoit de la lumière, et plus on peut grossir l'image, de même que plus la résolution* est importante, le tout permettant de voir davantage d'objets et de détails. Mais plus le diamètre est important, plus le coût, le poids, et l'encombrement, augmentent, et ce de façon exponentielle. diamétrite : terme humoristique de connivence, addiction inventée pour se moquer gentiment des astronomes amateurs achetant frénétiquement des instruments au diamètre à chaque fois plus grand. diviseur optique (DO). Accessoire de guidage pour l'astrophotographie, qui utilise un prisme qui intercepte une petite portion de la lumière au niveau du plan focal de l'instrument (télescope ou lunette), de manière à viser une étoile guide sans empiéter sur le champ de la caméra. Ainsi, on peut monter, en parallèle de l'instrument principal équipé d'une caméra, une autre caméra servant à augmenter la précision du suivi (cf auto-guidage). Illustrations : 1. DO i.nova nu, 2. DO ZWO équipé de ses 2 caméras Source : 1.M42 Optic 2. Loisirs-plaisirs Dobson : du nom de son concepteur, type de monture* très simple, économique dans sa version d'origine manuelle, et stable, azimutale*, sur laquelle on dispose un télescope de type Newton, au départ destinée à être construite soi-même. Par extension de langage, désigne aussi l'ensemble de l'instrument : un Dobson = un Newton monté sur monture Dobson. Familièrement, on parle d'un Dob. Note : ce système à l'origine artisanal a permis de démocratiser considérablement, aux USA à ses débuts dans les années 50 et 60, la construction artisanale amateur des télescopes. Par la suite les fabricants se sont emparés de ce marché, et à présent dans le commerce on trouve des montures manuelles, ou avec système de repérage informatisé des objets PushTo*, ou même GoTo*. Le GoTo sur Dobson ne permet pas la photo longue pose comme sur les montures équatoriales, à cause de l'impossibilité de compenser la rotation du champ, mais permet néanmoins des photos courte pose, par exemple pour le planétaire, ou pour le visuel assisté* utilisant des caméras ultra-sensibles. Cette monture Dobson permet de disposer de grands diamètres, notamment des 300mm, 400mm, et bien plus, impossibles à monter sur des montures équatoriales, démocratisant ainsi les grands diamètres pour le grand public, et permet également d'acquérir les petits et moyens diamètres à faible coût, surtout en mode manuel, mode gardant beaucoup d'adeptes pour sa simplicité. Illustrations : 1. Monture Dobson Goto Skywatcher 2. GSO Deluxe de 300mm 3. Orion XX GoTo de 350mm 4. Skywatcher Flextube GoTo de 300mm 5. Sud Dobson Classic de 400mm 1. Monture Dobson Goto : 2. Dobson manuel tube plein de série 3. Dobson GoTo Serrurier de série => 4. Dobson semi-Serrurier GoTo de série : 5. Dobson manuel artisanal => Sources Dobson : 1.Pierro Astro 2. Photo personnelle 3. Clef des Étoiles 4. Astroshop 5. SD - E - EAA, pour Electronic Assisted Astronomy, équivalent anglais de Visuel Assisté*. équatoriale (abrév. EQ) : voir monture*. empilement : terme français pour stack/stacking : : technique utilisée en imagerie, consistant à empiler des photos pour en accroître la définition et la luminosité, avec l'aide de logiciels spécialisés. Un stack est une des photos empilées. extendeur de focale : (barbarisme, traduction littérale de l'anglais focal extender) accessoire utilisant une formule optique augmentant la focale d'un instrument, très proche de la Barlow* mais plus complexe, utilisant une ou plusieurs lentilles supplémentaires, afin de contrer certaines aberrations, notamment en photographie. eye relief : terme anglais traduit en optique par : - dégagement (oculaire), - tirage d'anneau (terme technique), - relief d'œil : hélas usité mais à proscrire car erroné. On peut aussi traduire de manière consensuelle, informelle, par : - recul d'œil. - F - figure d'Airy : voir à Airy. filtre : accessoire optique d'importance servant à révéler des détails des objets en isolant une ou plusieurs raies d'émission, augmentant ainsi le contraste. Il en existe de très nombreux, aussi bien en visuel qu'en astro-photographie. Ils se fixent sur l'oculaire, sur la Barlow, ou sur le réducteur* du porte-oculaire*. Ils peuvent aussi être disposés à plusieurs sur des porte-filtres*, telle la roue à filtres*, ou la barrette à filtres. Les plus couramment utilisés sont : - l'UHC, parfait pour une bonne moitié des nébuleuses, en améliore beaucoup d'autres, - l'OIII, parfait pour un bon tiers des nébuleuses, moins universel que l'UHC pour les autres, - le H-bêta, pour quelques objets, - le filtre polarisant, pour la Lune, - le filtre solaire, pour l'observation du Soleil, - les filtres colorés (guère utiles et même le plus souvent inutiles), pour l'observation des planètes, - le filtre anti-pollution, - l'UV et l'IR en imagerie. Il existe aussi une classe de filtres spécialement étudiée pour l'observation du Soleil. 1. Filtre OIII en 2" 2. Filtre CLS (compense la pollution lumineuse) Sources : 1.Astroshop 2. Astroshop flat : type d'image spécifique obtenue en imagerie*, en français Plage de Lumière Uniforme (PLU). focale : pour distance focale : distance séparant le plan principal objet du foyer objet. focale d'instrument, focale d'oculaire. La focale de l'instrument correspond à la distance parcourue, pour simplifier, entre l'image au foyer d'un télescope ou de la lentille d'un réfracteur, et le porte-oculaire. Plus la focale d'un instrument est grande, plus le grossissement* obtenu sera important, à oculaire de même focale. À l'inverse, plus la focale d'un oculaire est grande, moins le grossissement sera important, à instrument de même focale. Note : un Newton dit de 300/1500 a une focale de 1500mm (et un diamètre de 300mm). Son rapport de focale est donc : 1 500 (la focale) divisés par 300 (le diamètre), donc 5, qu'on écrira f/5. Un oculaire de 24mm a simplement une focale de 24mm. Schéma lunette : Schéma télescope Newton : Source : astronomie-amateur.sophie - G - GMT, pour Greenwich Mean Time : heure exacte au fuseau horaire de Greenwich. GoTo : To go to = aller vers. Système informatisé permettant le pointage automatique des objets, ainsi que le suivi* compensant la rotation de la Terre, utilisant une banque de données, et pilotant les deux moteurs d'une monture (en déclinaison et en ascension droite). Note : ce système équipe les montures motorisées, équatoriales ou Dobson, mais les photos longue pose, notamment du ciel profond, ne sont possibles que sur les équatoriales. Sur les Dobson GoTo, la photo planétaire, et le visuel assisté*, n'exigeant des temps de pose de plusieurs secondes à quelques minutes, sont néanmoins possibles. Il permet aussi, en simple mode visuel*, d'assurer le pointage et le suivi* confortable des objets. grossissement (G ou Gr) : obtenu par les oculaires, en fonction de leur focale* et de celle de l'instrument. Exemple : un Newton de 200/1200, avec un oculaire de 10mm, donnera un grossissement de 120X, par la formule simple : 1200mm divisé par 10mm. La Barlow*, quant à elle, allongera de surcroît la focale de l'instrument, on peut ainsi jouer sur les deux. Note : le grossissement doit être choisi en fonction des possibilités de l'instrument, de l'objet (magnitude), des détails qu'on cherche à voir, et des conditions atmosphériques (pollution lumineuse, humidité, turbulence). Plus on grossit, plus le champ réel et la luminosité diminuent, et plus on sera limité par les conditions atmosphériques. Le grossissement maximal pratique d'un instrument du commerce de qualité, par très bon ciel, se situe aux environs de 1,5X le diamètre pour un télescope, 2X pour une lunette. Il convient de disposer d'un étagement de grossissements, obtenus par un set d'oculaires et éventuellement une Barlow*, progressif et régulier. Le nombre de grossissements disponibles peut varier selon le goût de chacun, mais trop de grossissements devient inutile et même contre-productif (perte de temps sur le terrain), 4 à 8 grossissements au maximum disponibles sont une bonne fourchette. GTR : Grande Tache Rouge de Jupiter. - H - hélioscope : dispositif ajouté à un instrument, permettant l'observation du Soleil. Note : plusieurs techniques existent : par projection sur une surface, ou en vision directe grâce à un prisme de Herschel, dont 5% de la lumière sont renvoyés à 45°, filtrés, dans un oculaire. Prisme de Herschel : Source : Astroshop - I - IC : pour Index Catalogue, catalogue de plus de 5 000 objets venant compléter le catalogue NGC*. imagerie : désigne le domaine de l'astrophotographie numérique et de son traitement. Voir à astrophotographie*. IR : pour infra-rouge. - J - Juju : terme familier pour désigner Jupiter. jumelles : la plupart des jumelles classiques terrestres peuvent convenir à l'astronomie, mais au-delà d'un grossissement de 10X, l'usage d'un trépied ou d'une monture spécifique s'impose. Leur faible grossissement limite le nombre d'objets accessibles, mais il permet d'embrasser un très large champ, et peuvent aussi servir d'outil de repérage d'une zone du ciel en complément de l'instrument principal. Une classe de jumelles au diamètre et au grossissement plus importants est spécialisée dans l'astronomie. Voir à binoculaire*. jupe : a) jupe d'oculaire : partie de l'oculaire venant coulisser dans le porte-oculaire ; b ) jupe de Serrurier : pièce de tissu enveloppant le corps de l'instrument formé par les tubes, protégeant ainsi les miroirs de la poussière et des lumières parasites alentour. - L - lame de Schmidt : dans les télescopes Schmidt-Cassegrain*, c' est une lentille correctrice utilisée pour corriger l'aberration géométrique, placée à l'entrée du tube du télescope. lampe frontale : accessoire utilisé par tous les amateurs la nuit, permettant de garder les mains libres, disposant le plus souvent de l'option lumière rouge limitant l'éblouissement (pour soi et les autres alentour). Certaines lampes sont équipées d'un variateur pour atténuer au maximum la lumière selon l'utilisation. Source : la-lampe-torche.com laser : en astronomie amateur, outil de collimation*, ou de démonstration pour pointer des emplacements d'objets* dans le ciel, ou encore utilisé comme pointeur/viseur* quand il est fixé sur un instrument (comme sur un canon de fusil de chasseur). Note importante : la législation française de Juillet 2013, hors autorisation spéciale, interdit l'usage des lasers supérieurs à la Classe 2, soit d'une puissance supérieure à 1mW. Le laser de collimation pourra souvent se substituer au Cheshire ou à l'œilleton, mais ne saurait les remplacer définitivement. Illustrations : 1. Baader Mark III 2. Howie Glatter au coulant de 31,75mm 3. Pointeur Maymoc 1. Laser de collimation => 2. Laser de collimation => 3. Laser pointeur/viseur sur support => Sources photos lasers : 1. FLO 2. Astroshop 3. Amazon lunette astronomique : réfracteur* dédié à l'astronomie, dont le diamètre débute vers les 60mm, et peut aller, en amateur, jusque 180mm, très rarement davantage pour des raisons de coût exponentiel et de contraintes de poids. Les lunettes sont classées en achromatiques et en apochromatiques. Note : contrairement à ce que pourrait laisser croire ce terme, une lunette achromatique laisse encore passer beaucoup de chromatisme*, surtout à courte focale, malgré un traitement des lentilles, au contraire de l'apochromatique qui tente aussi de l'éliminer mais de manière beaucoup plus significative au moyen de lentilles et traitements supplémentaires. Parmi les apochromatiques, le nombre et la qualité des lentilles peut varier d'une marque ou d'une gamme à l'autre, avec par exemple des modèles dits semi-apochromatiques, doublet ou triplet (deux ou trois lentilles apos), faisant varier le prix final. Une classe de lunettes, fort onéreuse, est spécialisée dans l'observation et la photographie du Soleil. Illustrations : 1. Bresser 90mm (AR-90/900 sur EXOS1/EQ4) 2. Sky-Watcher 120mm (120/600 sur monture AZ3) 3. Sky-Watcher 120mm (120ED sur AZ-EQ6) 4. Sky-Watcher 120mm (Esprit 120ED sur NEQ6) 5. Lunt Ha 60mm 1. Lunette achro sur monture équatoriale manuelle : 2. Lunette achro sur monture azimutale => 3. Semi-apo Doublet GoTo => 4. Apo Triplet GoTo => 5. Lunette pour le Soleil => Sources photos lunettes : 1.Bresser 2.OU 3.OU 4.OU 5. OU lunette-guide : petite lunette, ou chercheur optique, disposée en parallèle de l'instrument principal, utilisée en astrophotographie pour augmenter la précision du suivi assuré par la monture. Elle est ainsi elle-même équipée d'une caméra prise en charge par le logiciel de suivi. Voir à auto-guidage. - M - magnitude : mesure la luminosité des objets, étoiles, planètes, nébuleuses, comètes, galaxies, etc... . Il existe plusieurs types de magnitude : la magnitude absolue, la magnitude apparente, la magnitude surfacique. La référence prise en compte en mode visuel (œil, oculaire) est la magnitude apparente. La référence prise en compte en astrophotographie est la magnitude surfacique ou apparente, selon l'objet. La référence est l'étoile Véga qui a une magnitude apparente de zéro en magnitude apparente. L'échelle est inversée : plus le chiffre de magnitude est élevé, plus l'astre est faible. Une étoile plus brillante que Véga aura une magnitude négative, une moins brillante aura une magnitude positive. Quelques exemples : L'Étoile Polaire a une magnitude apparente de 2. Sirius, beaucoup plus lumineuse, a une magnitude apparente négative de -1,46, mais très peu d'étoiles ont une magnitude négative. La Nébuleuse de la Lyre a une magnitude beaucoup plus faible de 9,7. La galaxie Messier 82 a une magnitude de 8,4, donc est un peu plus lumineuse que la nébuleuse de la Lyre. Note : l'œil humain parvient à la magnitude apparente de 6,5 si très bon ciel. Un télescope de 200mm arrive, par très bon ciel, à la magnitude 13 environ. Un télescope de 300mm arrive, par très bon ciel, à la magnitude 14 environ. Un télescope de 400mm arrive, par très bon ciel, à la magnitude 15 environ. La différence par les chiffres entre ces magnitudes atteintes peut paraître faible, mais elle est importante dans les faits : le nombre d'objets et de détails perçus supplémentaires est très important d'une magnitude à l'autre. Maksutov : du nom de son concepteur, désigne un télescope du type Cassegrain*, plus exactement proche du Schmidt-Cassegrain, dont la lame de Schmidt a été remplacée par un verre de type ménisque. Sa formule optique, néanmoins, limite le diamètre possible à 200 ou 250mm. C'est un instrument de type catadioptrique*, utilisé en visuel et pour la photographie. Illustrations : 1. Schéma du Maksutov-Cassegrain 2. Maksutov Skywatcher 150mm (MC 150/1800 SkyMax NEQ-5 Pro SynScan GoTo) 3. Maksutov Celestron100mm (NexStar 4 SE GOTO) 1. Schéma 2. Maksutov 150 Goto => 3. Maksutov 100 Goto => Source : 1. wikipédia, Auteur : Szõcs Tamàs Tamasflex 2. Astroshop 3. laclefdesetoiles manuel, pour mode manuel : technique, ou pratique d'observation utilisant une monture dépourvue de moteurs d'assistance, ou pourvue de moteurs débrayés. Les mouvements importants seront obtenus en poussant/tirant l'instrument sur sa monture. Les mouvements fins seront possibles sur une monture équatoriale en manipulant deux flexibles, sur une monture Dobson la base (rocker box) offre une souplesse suffisante les permettant en manipulant doucement l'instrument. Note : malgré l'utilisation croissante de la technologie, cette pratique garde beaucoup d'adeptes pour le côté simple, intuitif, économique, rapidement mis en place sur le terrain, et aussi pour le simple plaisir de la recherche des objets. Masque de Bahtinov : du nom de son concepteur, dispositif utilisé en astrophotographie et en visuel assisté, placé à l'ouverture du télescope, servant à régler la mise au point à l'infini afin d'assurer des images nettes. Source : Astroshop.de Messier (M) : catalogue du célèbre astronome français du XVIIIème siècle, regroupant 110 objets, parmi les plus lumineux du ciel et donc parmi les plus accessibles avec des instruments modestes. miroir : deux miroirs différents équipent le télescope : le miroir primaire* où l'image arrive (foyer), et le miroir secondaire* qui renvoie cette image vers le porte-oculaire, => voir ces définitions. Dans la formule la plus simple du télescope, le Newton, le miroir primaire est concave, et le miroir secondaire est plan. Note : Élément primordial du télescope, la qualité du miroir primaire de série a fait des progrès au fil du temps, mais ne saurait rivaliser avec la plupart des produits artisanaux. Il existe très peu de marques différentes en grande série. Trois éléments essentiels caractérisent la qualité d'un miroir : sa réflectivité, sa régularité de surface, sa rugosité de surface. La photo montre un miroir primaire de Newton disposé sur son barillet, retenu par des brides de sécurité. Source : company7 Mise Au Point (MAP) : permet d'obtenir la netteté avec le porte-oculaire. Mise En Station (MES) : technique d'alignement de la monture sur le Nord pour les montures, en manuel sur les équatoriales pour n'avoir qu'à utiliser un seul flexible juste pour compenser la rotation terrestre, et sur tous les types de monture pour le Goto*, le Pushto*, ou une table équatoriale*, pour initialiser le système. microfuser : terme anglais, en français système de micro-mise au point, démultiplicateur disposé sur le porte-oculaire* provoquant un réglage fin de la mise au point (MAP*). On retrouve ce système sur les microscopes. monture : support mobile d'un instrument. Élément très important d'un instrument, il en existe plusieurs types : équatoriale (EQ), azimutale (AZ), à fourche, de type Dobson, etc. Voir ces définitions. Pour des raisons de stabilité et de confort, la monture est un élément à ne pas négliger, surtout en astrophoto où elle devra même être sur-dimensionnée pour être efficace. La monture Dobson est une monture azimutale. Note : une monture peut être manuelle, ou disposer d'un ou plusieurs moteurs servant à pointer un objet rapidement (système GoTo*), et/ou à compenser la rotation terrestre (suivi*). Illustrations : 1. Équatoriale SW EQ3.2 2. Équatoriale SW NEQ6 Pro Goto 3. Azimutale AZ3 4. Monture à fourche Omegon 5. Monture à fourche Goto (CPC 925 GPS Celestron) 6. Monture Dobson Goto SW 1. Monture équatoriale => 2. Monture équatoriale Goto => <= 3. Monture azimutale 4. Monture à fourche => 5. Télescope SC sur monture à fourche Goto => 6. Monture Dobson du commerce => Sources montures : 1. Astroshop 2. Ppromo Optique 3. Astroshop 4. Astroshop 5. astronome.fr 6. Pierro Astro - N - neutralité des couleurs : capacité d'un système optique, instrument, oculaire, à restituer une image sans dénaturer les couleurs originelles. Caractéristique contribuant à évaluer la qualité d'un oculaire, d'un instrument optique. Newton : du nom de son illustre concepteur, désigne un télescope de la conception la plus simple et le plus économique qui soit, avec un miroir primaire réfléchi par un miroir secondaire. Note : à côté du Newton classique à tube plein, on trouve à présent des structures démontables, du nom de Serrurier.* Skywatcher commercialise aussi une version hybride coulissante et démontable avec sa gamme Flextube, le type est dit semi-Serrurier. Voir aussi à Dobson*. Illustrations : 1. Schéma du Newton 2. Skywatcher 200mm 3. Orion 200mm 4. Explore Scientific 400mm 2. Newton 200/1000 sur monture équatoriale : 3. Newton 200/1200 sur monture Dobson => 4. Newton Serrurier 400/1800 sur Dobson : Sources : 1. optroastro.fr 2. Astroshop 3. Astroshop 4. Astroshop NGC : pour New General Catalogue, catalogue de divers objets célestes : galaxies, nébuleuses, amas d'étoiles. Englobe le catalogue Messier. NL : pour Nouvelle Lune. nomade : pour observation en mode nomade. Se dit des observations effectuées par des astronomes amateurs observant en dehors de chez eux et emportant leur propre matériel. - O - objet : de manière non pas péjorative, mais simplement générique, se dit de tout astre et sujet d'observation céleste : planète, nébuleuse, étoile, amas d'étoiles, galaxie, comète, etc.… Les objets sont répertoriés, classifiés, dans des bases de données et dans des catalogues*, voir ce mot. obstruction : partie de l'image d'un télescope occultée en petite partie par le miroir secondaire situé au milieu renvoyant l'image. Elle se calcule en %. oculaire : accessoire pourvu d'une ou de plusieurs lentilles, venant se fixer dans le porte-oculaire. Il permet de donner une image lisible pour l'œil, et selon sa focale*, de donner des grossissements différents. Note : deux principaux coulants* différents coexistent actuellement, le 2" (50,8mm), et le 1" 1/4 ou 1,25" (31,75mm), voir à coulant*. Les oculaires varient fortement en taille, focale*, champ*, dégagement*, et qualité. Plus la focale est petite, et plus le grossissement obtenu sera élevé. Par ailleurs, il existe une classe d'oculaires dits zoom, à focale variable, offrant ainsi un Grossissement variable. La qualité d'un oculaire est déterminée par son piqué*, sa clarté*, son contraste*, sa neutralité* des couleurs, etc... Important : l'oculaire n'est que l'élément final de l'optimisation de l'instrument : les qualités d'un oculaire ne seront pleinement exploitables que si toute la chaîne mécanique et optique est optimisée, et si les conditions atmosphériques sont bonnes. Illustrations: 1. SW 12,5mm - Televue 15mm 2. SW 23mm UWA - Pentax 10mm - Delos 14mm - ES 6,7mm 82° 3. Baader Mark IV 1. Oculaires Plössl => 2. Oculaires classiques=> 3. Oculaire Zoom => Sources 1. Oculaires Plössl : OU - OU 2. Oculaires classiques : OU - OU - OU- ES 3. Oculaire Zoom : laclefdesetoiles.fr œillet : petite rondelle collée au centre du miroir primaire*, servant de repère pour procéder à la collimation*. œilleton : outil de collimation* rudimentaire qu'on dispose à la place d'un oculaire*, simple bouchon percé d'un petit trou en son centre. Source : astronome.fr OS : pour Operating System, en français système d'exploitation*. - P - pare-buée : accessoire généralement en mousse plastique souple, de forme cylindrique, se fixant en bout de tube sur un Newton, un SC, ou une lunette, et servant à éviter ou à retarder le dépôt de buée ou de givre sur le miroir secondaire ou sur les lentilles. Il est aisé et très économique de le fabriquer soi-même. Illustration : GSO 300mm, avec pare-buée confectionné à partir d'un tapis de gym Decathlon Source : photo personnelle parsec : contraction de l'anglais parallax second. Unité de distance utilisée par les astronomes professionnels, 1 parsec = 3,26 années-lumières. PGC : pour Catalogue of Principal Galaxies, recense plus de 76 000 galaxies, créé par un astronome français, Georges Paturel, de l'Observatoire de Lyon. piqué : terme désignant la capacité de finesse d'un système optique, instrument, oculaire. Le piqué est une des caractéristiques jugeant de la qualité optique. planétarium : en astronomie amateur, désigne une application active disponible sur smartphone, tablette, ordinateur, représentant en temps réel le ciel, les constellations, et les objets à observer. Certains sont très puissants et très complets, permettant même de piloter par Wifi ou Bluetooth les télescopes motorisés dotés de Goto. Un planétarium gratuit et open-source est incontournable sur PC (pour Linux, Windows, Mac) : Stellarium. Note : sur le terrain les applications planétariums remportent un grand succès, dû à leur praticité et à leur réactivité en temps réel, à leur interaction, et permettent de se passer de cartes traditionnelles. cf un comparatif dans Webastro pour Android : PL : selon le contexte, désigne la Pleine Lune, ou la Pollution Lumineuse. porte-filtres : accessoire se fixant sur le porte-oculaires, sur lequel sont disposés plusieurs filtres, permettant ainsi de changer de filtre à loisir sans avoir à les visser sur les oculaires. Ils existent en roue à filtres* (ou carrousel), ou en barrette à filtres. Illustrations : 1. Starlight Xpress SXV 2. Orion 3. Lumicon 2 Filtre Selector - LumiBrite Diagonal Combo For Refractors 1. Roue à filtres manuelle => 2. Roue à filtres avec jeu de filtres => 3. Barrette à filtres => Sources : 1. Astroshop.fr 2. astroshop 3. astroshop porte-oculaire (abrév. PO ou P-O) : désigne le tube logeant les oculaires, mais aussi de manière conventionnelle tout le système, fixé sur l'instrument, de mise au point* et de réception de l'oculaire. Ils reçoivent le coulant 2", et disposent d'un réducteur permettant d'utiliser le petit coulant 1 1/4". => voir à coulant*. Ils disposent aussi à présent systématiquement, hors entrée de gamme, d'un système supplémentaire démultiplicateur permettant une mise au point fine (appelée micro mise au point, en anglais microfuser*), appréciable à fort grossissement. Ces systèmes sont soit à friction (type Crayford*), soit à crémaillère, soit hybrides. Illustrations : 1. modèle de marque Baader 2. modèle de marque Moonlite 1. 2. Sources : 1. laclefdesetoiles.fr 2. M42optic primaire : désigne le miroir primaire, qui est le miroir principal d'un réflecteur, ou télescope. Un primaire repose sur un barillet*. Note : pour être pleinement efficace, le primaire doit être libre de toute contrainte et notamment débridé* (voir à brides*), propre (nettoyage à l'eau déminéralisée, voir tutoriels pour la procédure), et doit être à une température qui soit équivalente à l'air ambiant pour éviter toute turbulence (d'où la présence de ventilation sur les gros modèles). Élément primordial du télescope, le miroir industriel a fait des progrès au fil du temps, mais ne saurait rivaliser avec certains produits artisanaux, en terme de régularité de surface et de réflectivité. La photo montre un miroir primaire de Newton disposé sur son barillet, retenu par des brides de sécurité. Source : company7 prisme de Herschel : hélioscope* à renvoi coudé par un prisme, du nom de son inventeur, servant à l'observation du Soleil. Note : Seuls 5% de la lumière du Soleil sont renvoyés, filtrés, à destination d'un oculaire. Source : Astroshop PSA : pour Pocket Sky Atlas©, version de poche de l'Atlas 2000©, recueil de carte du ciel fort prisé des astronomes amateurs. Note : existe en français. Source : Amazon pupille de sortie (PS) : C'est la taille du faisceau lumineux qui sort de l'oculaire et pénètre dans l'œil. La pupille de sortie ne doit en aucun cas être supérieure à 7 mm, sinon on perd de la lumière. Chez les personnes âgées, l'ouverture maximale de la pupille est un peu plus petite parce qu'elle diminue de façon continue avec l'âge. À 60 ans, le diamètre de la pupille peut encore atteindre 4 à 5mm. Par conséquent, il est préférable de choisir le grossissement minimum en fonction de son âge. Plus le grossissement d'un oculaire est fort (et la distance focale petite), plus la pupille de sortie sera petite. Formule : pupille de sortie = focale oculaire / distance focale de l'instrument (voir ces définitions). Exemple : avec un télescope de 200/1000mm et un oculaire de 35,7 mm la PS sera d'environ 7 mm. Avec un oculaire de 10 mm la PS aura un diamètre de seulement 2 mm. PushTo : par analogie à GoTo*, système informatisé de repérage automatique d'objets, disposant d'une banque de données comme pour un GoTo, associé à un instrument astronomique dépourvu de moteurs d'entraînement : on encode un objet comme avec un GoTo mais on doit pointer manuellement vers l'objet en suivant une flèche (to push to = pousser vers). - Q - Quickfinder® : viseur* prisé des amateurs, se fixant sur l'instrument, doté de deux cercles concentriques à luminosité réglable projetés sur une plaque de verre transparente, de la marque Rigel. Source : Astroshop - R - raquette, pour raquette de commande : boîtier de commande servant à piloter une monture motorisée, et à entrer les objets, sur un système GoTo ou PushTo. Source : Astroshop raw : format de fichier d'image utilisé en (astro)photographie numérique. RC : a) pour renvoi coudé*, b ) acronyme, type de télescope Ritchey-Chrétien*. recul d'œil : terme consensuel mais non officiel pour dégagement (oculaire)*. réducteur : il faut distinguer le réducteur de focale*, accessoire optique réduisant la focale* d'un instrument optique, du réducteur de coulant*, accessoire non optique. réducteur de coulant : accessoire non optique, bague introduite dans le porte-oculaire réduisant le coulant de 2" (50,8mm) vers 1" 1/4 (31,75mm). Note : par exemple un porte-oculaire de 2" ne pourra accueillir que des oculaires ou Barlow de ce même diamètre, le réducteur introduit dans ce même porte-oculaire fera passer au coulant de 1" 1/4 et pourra ainsi recevoir des oculaires et des Barlow de ce diamètre. Illustrations : 1. Baader Click-Lock 2. Howie Glatter Parallizer Réducteurs de coulant => 1. 2. Sources : 1. FLO 2. FLO réducteur de focale : accessoire optique agissant à l'envers d'une Barlow*, réduisant la focale de l'instrument, et réduisant ainsi le grossissement pour des besoins spécifiques, utilisé le plus souvent sur les télescopes de type Cassegrain. Illustration : Réducteurs de focale 0.63x pour SCT Source : m42optic réflecteur : terme générique désignant les instruments utilisant un système de miroirs, tels les Newton, Cassegrain, etc... Note : en France on utilise depuis quelques décennies le terme générique plus populaire de télescope*. réfracteur : terme générique désignant les instruments pourvus seulement de lentilles, comme les lunettes astronomiques ou terrestres, longue-vue, chercheurs. relief d'œil : barbarisme à éviter, provenant d'une traduction littérale mais impropre de l'anglais eye relief*. Note : on lui préfèrera sans réserve les termes de dégagement* ou de recul d'œil*. renvoi coudé : système optique ajouté au porte-oculaire ou sur un chercheur droit, déviant l'image (le plus souvent de 45°) par un prisme, dans le but d'un confort d'observation pour certains instruments (notamment les lunettes, les instruments catadioptriques*, et les chercheurs) ou dans d'autres cas particuliers. Renvoi coudé => Source : laclefdesetoiles résolution, pour pouvoir de résolution, ou pouvoir de séparation : exprime la capacité de finesse d'image d'un instrument optique ou numérique à percevoir les détails des objets, séparer les étoiles doubles. Elle est exprimée en arc-secondes. Note : le pouvoir de résolution augmente avec le diamètre de l'instrument, et se calcule par les lois de l'optique, mais en pratique il dépend aussi de la qualité des optiques, de la collimation, et des conditions atmosphériques. En numérique la résolution dépendra de la capacité du capteur, et ensuite de celle de l'écran sur lequel les images seront lues. Plus grande est la résolution, plus grande est la finesse des images. Ritchey-Chrétien (RC) : type de télescope Cassegrain proche du Dall-Kirkham*, Instrument catadioptrique spécialisé dans l'astrophotographie. Il utilise un miroir hyperbolique primaire et un miroir secondaire hyperbolique convexe. Note : le Ritchey-Chrétien est très performant pour la photographie, mais la complexité et la haute précision requise concernant les réglages de collimation/alignement le réservent à des astrams avertis. Illustrations : 1. Schéma 2. RC Kepler 250mm 3. RC Alluna Optics 600mm 1. Schéma 2. Ritchey-Chrétien tube plein carbone => 3. Ritchey-Chrétien Serrurier => Sources : 1.wikipedia.org 2. laclefdesetoiles 3. laclefdesetoiles rocker, pour rocker box : terme anglais désignant la partie pivotante d'une monture Dobson, supportant l'instrument. rotation du champ : défaut d'orientation de l'instrument optique dû à un décalage du suivi de la part de la monture. Cette rotation sera plus ou moins sensible selon le temps d'observation ou de pose en photographie, et selon le type de monture. La monture équatoriale est la moins sensible à ce défaut, parce qu'elle tourne autour d’un axe parallèle à l’axe de la Terre (l’axe polaire ou d’ascension droite), conservant ainsi toujours la même orientation par rapport à l’objet photographié, mouvement que suivra, bien entendu, le capteur d'une caméra. D'inévitables minimes défauts mécaniques viendront malgré tout décaler très légèrement le suivi, en photographie, pour les longues poses, l'auto-guidage* corrigera ces erreurs. roue à filtres : aussi appelé carrousel, accessoire circulaire se fixant sur le porte-oculaires, sur lequel on dispose à l'avance des filtres pour oculaires, permettant ainsi de changer de filtre à loisir sans avoir à les visser sur les oculaires. Il peut être manuel ou électrique. Voir à porte-filtres*. - S - Schmidt-Cassegrain (SC), type de télescope Cassegrain*, disposant d'une lame dite de Schmidt. Instrument de type catadioptrique*, utilisé en visuel et pour la photographie. Le Schmidt-Cassegrain est composé de 3 éléments optiques : - une lame de fermeture asphérique mince et transparente (lame de Schmidt), - un miroir primaire concave et sphérique, percé d'une ouverture et logé au fond du tube, - un miroir secondaire convexe hyperbolique fixé au dos de la lame de fermeture. À l'instar de tout instrument catadioptrique, cet instrument permet une excellente compacticité, d'où son succès, mais le coût, le poids du tube comme de la monture, sont vite exponentiels avec le diamètre. Ainsi, en amateur, le diamètre ne dépassera pas les 400mm. Illustrations : 1. Schéma 2. SC Celestron 280mm (SC 279/2800 EdgeHD 1100 CPC Deluxe GoTo) 3. Télescope Celestron CPC 925 GPS 4. SC Celestron 200mm (SC 203/2032 Advanced VX 8" AS-VX GoTo) 1. 2. SC sur monture à fourche => 3. SC sur monture à fourche => 4. SC sur monture EQ => Sources :1. wikipédia, Auteur : Szõcs Tamàs Tamasflex 2. Astroshop 3. astronome.fr 4 Astroshop secondaire, pour miroir secondaire, présent dans tous les types de télescopes. Sur les Newton, c'est un simple miroir plan renvoyant l'image, provenant du miroir primaire*, à 45° vers le porte-oculaire*. Dans les autres types de télescope de type Cassegrain, il renvoie l'image directement au centre du miroir primaire, qui est percé, vers le porte-oculaire. Le secondaire est fixé au centre du tube par l'araignée* qui elle-même porte le support du secondaire. 1. Secondaire plan de Newton 2. Porte-secondaire de Newton sur araignée 1. 2. Source : 1. Maison de l'Astronomie 2. Teleskop Express seeing : terme anglais servant à évaluer la qualité du ciel : un bon seeing, un mauvais seeing. Mesurable à partir d'échelles différentes, mais c'est sur le terrain qu'on s'en rendra simplement compte, le seeing pouvant être très variable d'une nuit à l'autre même si à chaque fois sans nuages ni brume. La qualité du ciel dépend du degré de pollution lumineuse, de l'humidité, de la turbulence atmosphérique, le tout venant limiter les possibilités théoriques d'un instrument. Note : tant que faire se peut, il convient en priorité de s'éloigner le plus possible des zones lumineuses. Serrurier : du nom de son concepteur, structure de télescope démontable composée de tubes légers soutenant la cage du miroir secondaire et le porte-oculaires, remplaçant ainsi le tube plein classique. Note : les Newton Serrurier sont montés sur une monture de type Dobson dans le commerce. Les télescopes de type catadioptrique* peuvent aussi être conçus en type Serrurier. setup : terme anglais signifiant configuration, s'applique à un type d'instrument, à une gamme d'oculaires, de filtres, d'appareils d'imagerie*, etc. stack/stacking : terme anglais pour empilement : technique utilisée en imagerie, consistant à empiler des photos pour en accroître la définition et la luminosité, avec l'aide de logiciels spécialisés. Un stack est une des photos empilées. Strock : du nom de son concepteur, version allégée et démontable au maximum de type Newton, optimisée pour le voyage, combinant la technique du Serrurier et du Dobson. Illustration : télescope ultra-léger à miroir de 60cm, de conception artisanale (source Strock) : suivi : technologie permettant de compenser, avec au moins un moteur disposé sur la monture, ou avec une table équatoriale*, la rotation terrestre, et permettant ainsi de garder un objet au centre de l'oculaire, indispensable en astrophotographie, et apportant aussi un grand confort d'observation en mode visuel surtout à fort grossissement. Le suivi motorisé est beaucoup plus précis avec une monture équatoriale qu'avec une monture azimutale. En imagerie, il pourra même être renforcé par la technique de l'auto-guidage consistant en l'ajout d'une lunette-guide elle-même équipée d'une caméra, ou par une caméra montée directement sur un diviseur optique*. Note : en mode manuel, on ne cherche pas à assurer le suivi, on dispose l'objet de manière à laisser simplement défiler ce dernier dans le champ de l'oculaire, puis on recale à chaque fois l'objet. système d'exploitation : (OS pour Operating System, en anglais) l'informatique touche de plus en plus l'astronomie amateur, que ce soit pour de la simple documentation, la consultation de sites astros, l'astrophotographie, le pilotage des montures motorisées, l'utilisation d'applications comme les planétariums, etc... Principaux OS : Windows, Linux (sous forme de distributions), Raspberry Pi (base Debian/Linux), MacOS, iOS, Android, WinPhone, BSD, Solaris. - T - table EQ, pour table équatoriale. Dispositif à moteur placé sous une monture Dobson, ou pour un Schmidt-Cassegrain à fourche, compensant la rotation terrestre, et permettant ainsi d'assurer le suivi* des objets vus à l'oculaire. Note : le suivi assuré est suffisant pour assurer un bon confort visuel en mode manuel, et permet également d'effectuer des photographies d'objets sur une courte période, notamment pour les planètes proches lumineuses ne nécessitant pas un long temps de pose, mais est insuffisant pour l'astrophotographie longue pose, notamment pour le ciel profond. Illustration : table Sud-Dobson. Table EQ artisanale pour Dobson => source : SD Tache d'Airy : voir à Airy. TDA, pour Télescope Des Autres, expr. venir en mode TDA : expression humoristique désignant l'astram venant observer au sein d'un groupe sans son matériel. télescope : terme au départ générique désignant un réfracteur* ou un réflecteur*, en France il a fini par désigner spécifiquement un réflecteur. À présent, en français on distingue donc le télescope de la lunette, de la longue-vue, ou du chercheur. Telrad® : accessoire répandu, viseur* utilisant trois cercles concentriques projetés sur une lame transparente (contre deux cercles pour le Quickfinder), à la luminosité réglable, se fixant sur l'instrument. source : OU tête binoculaire : voir à binoculaire*. transparence : a) terme utilisé pour évaluer la qualité de transparence de l'atmosphère lors d'une séance d'observation, b ) terme utilisé pour évaluer la qualité de transparence d'un système optique, tel qu'un réfracteur, un oculaire, une Barlow, etc... TU : Temps Universel. L'heure GMT est le temps solaire moyen calculé à midi à Greenwich. Compte tenu de variations de la vitesse de la Terre sur son orbite, et même au cours d'une seule journée, en 1972 le TU devint UTC*, corrigeant les erreurs périodiques. - U - Unité Astronomique (UA), unité de mesure de distance utilisant la distance moyenne entre la Terre et le Soleil. Note : utilisée notamment pour le Système Solaire. UGC : pour Uppsala General Catalogue of Galaxies, recensant près de 13 000 galaxies visibles dans l'hémisphère Nord. Note : catalogue principalement créé par l'observatoire du Mont Palomar aux USA. UTC : Temps universel coordonné, défini en 1972 pour garantir que, en moyenne au cours des ans, le Soleil est au méridien de Greenwich à 12:00 UTC à 0,9 s près. Échelle de temps diffusée par les signaux horaires et utilisée comme base des temps légaux. UV : pour ultra-violet. - V - vignetage, ou vignettage : en mode visuel ou en (astro)photographie, aberration optique se caractérisant par un assombrissement progressif des bords de l'image, due au fait que les rayons lumineux frappent l'optique perpendiculairement. Les causes peuvent être multiples : simplement mécanique (faux vignetage), optique (notamment dans la gestion du grand angle et des longues focales, réflexions internes des lentilles). viseur : appareil monté sur un instrument et devant être parfaitement aligné avec celui-ci, destiné à simplement à viser les objets, sans grossir l'image. On distingue le viseur (ou pointeur) point rouge ou à croix verte, du viseur à cercles concentriques tels que le Telrad®*, ou le Quickfinder®* (marque Rigel). Sur une petite plaque de verre sont projetés plusieurs cercles concentriques rouges, une petite croix ou un point (le plus souvent de couleur rouge, quelques fois verte pour certains viseurs). Le viseur polaire est spécifiquement destiné à effectuer la Mise en Station* d'une monture équatoriale en se montant dans celle-ci, en visant l'Étoile Polaire à l'aide d'un réticule et de graduations. Note : de par sa simplicité et sa praticité, le viseur tend à remplacer le classique chercheur optique. On peut aussi utiliser, avec prudence et parcimonie, un laser comme viseur/pointeur. 1. Quickfinder® => 2. Telrad® => 3. Viseur point rouge => 4. Laser pointeur/viseur sur support => 5. Viseur polaire : Sources : 1. Astroshop 2. OU 3. astroshop 4. Amazon 5. laclefdesetoiles vision décalée : technique d'observation consistant, à l'oculaire, à décaler légèrement la vision d'un objet très faible afin d'en augmenter la luminosité, obtenue par l'excitation périphérique de la rétine. vision nocturne, ou scotopique : assurée par les cellules bâtonnets de l'œil, étape indispensable pour assurer une bonne vision des objets, hors Lune et planètes très lumineuses. L'œil s'accoutume à la quasi obscurité au bout d'un laps de temps variable, régulièrement et lentement, mais cette vision nocturne est instantanément anéantie par toute lumière vive même si très brève. Plus l'objet observé est faible, plus la vision nocturne devra être présente, de même pour en apercevoir les détails éventuel : il y a certes l'objet en général, mais également les détails de cet objet. C'est pourquoi dès le début de l'installation on évitera toute lumière vive. Note : La lumière rouge, par exemple issue de la lampe frontale, atténue les effets d'éblouissement mais doit être aussi à un niveau aussi bas que possible, et une lumière verte, ou même blanche, peut aussi convenir. Le maximum de vision nocturne est obtenu environ au bout d'une heure de quasi obscurité sans interruption, voire davantage. Le minimum viable, hors observation lunaire, demande quelques minutes, et la capacité de vision nocturne augmentera progressivement au fil des minutes, si aucune lumière parasite ne vient interrompre à nouveau la progression. visuel : le mode visuel est la technique d'observation effectuée directement par l'œil à l'oculaire d'un instrument astronomique optique. visuel assisté (VA) : terme définissant la pratique, très récente et en pleine expansion, de l'observation par le biais d'une caméra disposée dans le porte-oculaire couplée à un ordinateur ou une tablette, consistant en fait à la pratique de l'astrophoto très rapide à rapide dans le but de visualiser les images sur le terrain, sans le long et minutieux travail du traitement numérique ultérieur de l'astrophoto traditionnelle, mais pouvant utiliser également un traitement très rapide sur place. Le VA s'inscrit dans une restitution d'une image unitaire comprise entre une demi-seconde et quelques minutes environ, ou d'images pouvant être empilées (stacking), et en résumé il peut être vu comme une branche simplifiée de l'astrophotographie rapide. L'image produite est supérieure à très supérieure en résolution à celle obtenue en visuel classique, à instrument optique égal (selon la qualité de la caméra utilisée). Note : À la différence de l'astrophotographie traditionnelle, le VA ne consiste pas forcément à enregistrer les images prises sur le terrain, et ne saurait rivaliser en terme de définition et de résolution avec les bien plus longues poses et traitements numériques de l'astrophoto, mais progresse avec l'évolution rapide de la technologie pour le rendre attractif à un public pas forcément féru de technologie pointue ni patient dans le long traitement des images. Le visuel assisté a été rendu possible par la venue sur le marché de caméras ultra-sensibles abordables en prix pour le grand public. Il ne définit pas pour l'instant une imagerie instantanée remplaçant le couple œil/oculaire, d'où une certaine ambiguïté dans le terme. Le terme anglais est : EAA, pour Electronic Assisted Astronomy. --- FIN ---
    0 point
  5. Bonjour à tous, Me voilà rentré des NCN depuis quelques jours et je viens de remettre au propre les quatre dessins réalisés durant mon séjour au camping des Pradines. Je n'ai pas été très productif : seulement quatre dessins pour 5 nuits quasi complètes d'observation mais j'ai passé beaucoup de temps à me faire plaisir, à partager avec les copains, à échanger les vues dans les différents instrument...Bref, une ambiance pas forcément propice à cette activité plutôt solitaire. Voici d'abord une très belle galaxie vue de face, NGC 6946 dans Céphée. Pas facile au début car très faible et diffuse, elle laisse cependant voir ses magnifiques bras spiraux en y passant du temps et en jouant de la vision décalée. Une bonne surprise : elle m'a scotché un bon moment à l'oculaire et j'y reviendrai dessus avec plaisir : NGC 6946, Les Pradines, T450 X 250. Ensuite, une magnifique NP du Cygne, NGC 7008 ou "le foetus", croquée au 7 mm ( environ 300 X). Assez grande, facile, elle montre beaucoup de détails. Les deux étoiles brillantes à gauche de la NP sont colorées : la plus brillante est jaune et la seconde légèrement bleutée...un peu comme Albiréo. NGC 7008, les Pradines, T450 X300. Encore une autre NP très intéressante : IC 1295 dans l'Ecu. Très proche d'un magnifique globulaire, NGC 6712, elle entre dans le même champ que lui, très faible, dans le 24mm. A peine visible en vision directe, elle réagit fortement au filtre OIII. Elle est de forme ovale et montre de la structure : l'intérieur de la NP est plus sombre, les bords Nord et Sud, assez épais, sont plus lumineux. Quelques étoiles en surimpression dont une vers le centre (centrale ?) qui renforce un peu la luminosité vers le centre, on a donc l'impression d'avoir deux cavités plus sombres à l'intérieur de la NP. Cible très intéressante avec un 450 ! IC 1295, Les Pradines, T450 X 300, filtre OIII. Enfin, voici une autre NP, très petite et plutôt brillante, croquée au 5mm et filtre OIII. Il s'agit d'une Minkowski mais, malheureusement, je ne suis plus certain de son numéro de catalogue car j'en ai observé deux, très proche, l'une après l'autre, et je n'en ai dessiné qu'une seule en oubliant de noter laquelle ! Donc, il s'agit soit de M1-54 ou bien de M1-56 ....désolé, il faudra que j'y retourne pour vérifier ! En tous cas, les deux se ressemblaient beaucoup : une petite olive verdâtre et très brillantes avec un léger halo plus diffus autour. Pas de centrale visible. très petite, il faut au moins 150X pour la distinguer vraiment d'une étoile ! M1-54 ou M1-56, les Pradines, T450 X500 X650, filtre OIII. Voilà, c'est tout pour aujourd'hui ! J'écrirai bientôt un CROA pour vous donner des détails sur l'ambiance de ces NCN 2022 mais je manque un peu de temps en ce moment. Bon ciel, JC
    0 point
Ce classement est défini par rapport à Paris/GMT+01:00
×
×
  • Créer...

Information importante

Nous avons placé des cookies sur votre appareil pour aider à améliorer ce site. Vous pouvez choisir d’ajuster vos paramètres de cookie, sinon nous supposerons que vous êtes d’accord pour continuer.